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Abstract – From smart home devices to wearable devices, electronics have become an indispensable part of modern life. Vast 
volumes of data have been collected by these electronic devices, revealing precise information about device communications, 
user behaviours, and more. Improvements to device features, insights into the user experience, and the detection of security 
risks are just some of the many uses for this information. However, advanced analytical methods are required to make sense of 
this plethora of data successfully. The K-means clustering algorithm is used in the present research to analyse the data sent and 
received by different types of electronics. The first step of the research is collecting data, intending to create a representative 
sample of people using various devices and communication methods. After collecting data, preprocessing is necessary to ensure 
it can be analysed successfully. In the next step, the K-means algorithm classifies the information into subsets that stand for 
distinct modes of interaction. The primary objective of the research is to gain an improved understanding of these groups by 
demonstrating how users communicate, device communication, and possibilities for enhancing functionality and security. 
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I. INTRODUCTION 
Electronic devices have become a fundamental component of everyday life in this modern era of digital communication. 
Wearable technology that monitors health metrics and smart homes that adjust to the preferences of their occupants are just 
two examples of how these devices have become linked to human existence. As these technologies progress, they produce vast 
data representing a treasure trove of knowledge just waiting to be uncovered. This vast collection of data, which encompasses 
the intricate details of device communication and usage, presents opportunities for profound insights and comprehension that 
have never been seen before [1]. This communication data, while voluminous, is characterized by intricate patterns that narrate 
stories of user behaviors, device interactions, and potential vulnerabilities. Unraveling these patterns can be immensely 
beneficial. On the one hand, they can provide manufacturers with nuanced feedback to refine device functionalities and enhance 
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user experiences. On the other hand, the data can shed light on potential security challenges, thereby guiding the development 
of more secure, resilient systems [2]. 
      However, to unlock the wealth of knowledge embedded within this data, robust analytical techniques are required. Among 
the plethora of data analysis methods, unsupervised machine learning stands out for its ability to identify inherent structures 
within datasets [3]. Specifically, with its aptitude for segmenting large datasets based on intrinsic patterns, the K-means 
clustering algorithm emerges as a frontrunner for dissecting the complex landscape of communication data from modern 
electronic devices. Driven by the potential of these insights, this research embarks on a journey to harness the power of the K-
means clustering algorithm, aiming to segment and analyze the voluminous communication data from a diverse range of 
modern electronic devices [4]. By doing so, the aspiration is to highlight distinct communication patterns and translate them 
into tangible benefits, refine device functionalities, enhance user experience, or bolster security mechanisms. 
     The methodology adopted in this study is rigorous and comprehensive. It commences with a meticulous data collection 
phase, ensuring a diverse and representative dataset spanning various devices and communication modalities [5]. The 
subsequent preprocessing phase is paramount, focusing on refining, transforming, and structuring the raw data to ensure its 
readiness for analysis. Once prepared, the K-means clustering algorithm steps into the limelight, segmenting the data into 
coherent clusters that resonate with distinct communication patterns. The study culminates in an in-depth exploration of these 
clusters, striving to decode the stories they tell about user behaviors, device interactions, and the broader communication 
ecosystem. 
     The article is organized as follows: Section 2 presents the literature review, Section 3 presents the proposed model, Section 
4 presents the experimental analysis and discussions, and finally, Section 5 concludes the work. 
 

II.   LITERATURE REVIEW 
Communication data from electronic devices has grown increasingly complex, necessitating advanced methodologies for 
thorough analysis and interpretation. [6] delved into monitoring communication traffic from power electronic devices. Their 
work, emphasizing generated traffic and communication protocols, indicated the crucial need for understanding the vast data 
these devices produce. While their study suggested methods to propose suitable communication networks, it also underlined 
the vast potential within this data, which remains untapped mainly [7]. 
    The surge in IoT devices has further compounded this data influx. [8-10] observed a void of inefficient solutions to analyze 
the massive data generated, especially in smart home contexts. They proposed a machine learning model, underscoring the 
pressing need to make intelligent, data-driven decisions.  
    While they focused on extracting meaningful patterns, [11-12] tackled data diversity challenges. Their federated learning 
algorithm catered to user behavior analysis, spotlighting the discrepancies between data sources and their impact on learning 
models. This highlighted the importance of methodologies that can navigate diverse and voluminous data while maintaining 
accuracy. 
    With [13-15] emphasizing the role of mobile network operators in managing IoT communication data and spotlighting the 
challenges in new media system analysis, the overarching theme becomes evident. There's an urgent need for a robust model 
that navigates the intricacies of device communication data and provides tangible insights for device functionality enhancement 
and security fortification [16-20]. This backdrop amplifies the motivation behind the proposed work, which aims to leverage 
the K-means clustering algorithm to decode intricate communication patterns from modern electronic devices [21-23]. 
 

III.    PROPOSED METHODOLOGY 
Data Collection 
The methodology for data collection was meticulously designed to ensure a holistic representation of communication patterns 
prevalent in modern electronic devices. With today's expansive variety of devices, we narrowed our focus to three pivotal 
categories: smart home devices, wearable tech, and smartphones. For smart home devices, our dataset comprised data from 50 
devices, such as voice assistants and smart thermostats, spanning one month. The wearables segment saw a sample from 70 
devices like fitness trackers and smartwatches, monitored for five weeks. Finally, the smartphone category was represented by 
100 devices across various models and operating systems, observed over a two-month interval. 
    A specialized data extraction tool was crafted for this study, ensuring passive recording of communication data, which 
seamlessly integrated with the myriad of devices in this work sample. This tool was paramount in capturing the nuances of the 
communication data and upholding stringent data privacy standards. Over the observation period, data from smart home devices 
resulted in 3,327 records, encompassing intricate device-to-device communications and user-initiated commands. Wearable 
tech added another 2,472 records to the dataset, capturing details from health metrics to device synchronization activities. The 
smartphone category, being the most data-intensive, contributed 4,528 records, spanning a range from app-specific 
communications to broader system-level broadcasts. All the data collection efforts were underpinned by strict ethical protocols. 
Any extracted data was stripped of personally identifiable information, ensuring user anonymity. Furthermore, participants in 
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this study were well-informed about the data collection processes and were granted full autonomy to withdraw at any juncture. 
The following Table 1 presents the description of the features in the dataset. 

 
Table 1. Data Description for Communication Data Segmentation 

Feature Name Description Data Type Device Category 
timestamp The exact date and time of the data recording. Date Time All 
device_ID Unique identifier for each device. String All 

device_type Specific type of the device (e.g., voice assistant, 
smartwatch). String All 

data_volume Amount of data sent or received during the 
communication. Float All 

communication_type Type of communication (e.g., internal, external, 
user-command). String All 

protocol_used Communication protocol used (e.g., Wi-Fi, 
Bluetooth, NFC). String All 

destination_IP IP address of the destination (for external 
communications). String Smart Home router, 

Smartphone 

app_name Name of the application involved in the 
communication (if applicable). String Smartphone 

user_interaction Whether the communication was initiated by 
user action. Boolean All 

data_payload_size Size of the actual data payload in the 
communication. Float All 

connection_duration Duration of the communication connection. Float All 

error_count Several errors were encountered during the 
communication. Integer All 

signal_strength Signal strength during communication (proper 
for wireless devices). Float All 

 
    For segmentation, understanding the nature and characteristics of the communication is vital. Thus, features like the type 
of communication, protocol used, duration, and volume of data are paramount [24-25]. Features such as health metrics from 
wearables have been excluded as they might not be directly relevant to the segmentation of communication data in this 
context. 
 
Data Preprocessing 
The initial dataset, sourced from various modern electronic devices, consisted of 10,327 records. Incomplete and missing data 
points, a common occurrence in such datasets, were addressed first. In the Missing Value Treatment phase, 512 records were 
identified, with more than 40% of their values missing. These records were removed, bringing the dataset size to 9,815 entries. 
The remaining missing values were imputed, ensuring data completeness without altering the total record count. The Data 
Transformation phase followed. The dataset, with features ranging in scale and type, required standardization for consistency. 
Features with continuous values, such as data_volume, underwent normalization to ensure they operate on a consistent scale. 
Categorical variables, such as device_type, were encoded into a binary format, introducing new binary columns but not 
affecting the total record count. 
    Outliers can skew analysis, especially in clustering. During the Outlier Detection and Treatment stage, 287 records were 
identified as outliers using the Interquartile Range (IQR) method. These records were treated, ensuring they did not unduly 
influence subsequent analyses. The record count remained consistent at 9,815. Enhancing the dataset was the next objective. 
During the Feature Engineering phase, new attributes derived from existing features were introduced. For instance, the 
timestamp feature was broken down to capture hour_of_day and day_of_week. These augmentations provided more granularity 
to the dataset without affecting the record count. In the Data Reduction phase, Principal Component Analysis (PCA) was 
applied. This reduced the dataset's dimensionality, concentrating on the most informative features while retaining the original 
record count. 
     Lastly, the Data Integrity Checks phase ensured the dataset's accuracy and reliability. Anomalies and inconsistencies were 
rectified, and 123 duplicate records were identified and removed. This final refinement resulted in a dataset comprising 9,692 
records. By the conclusion of the preprocessing steps, the dataset was transformed from its original 10,327 records to a more 
refined and structured count of 9,692 records, making it ready for the K-means clustering analysis. 
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K-means Algorithm Implementation 
In this research, the K-means clustering algorithm unveiled distinct patterns within communication data from modern 
electronics. This algorithm creates 'K' groups from the dataset, ensuring that data points within each group are more similar 
than those in other groups. To ensure the most meaningful segmentation, the ideal number of clusters, K, was identified. The 
centroids of these clusters, pivotal points around which the groups are formed, were initiated using the "k-means++" method, 
a strategy designed to enhance convergence efficiency. Throughout the algorithm's iterative process, communication data 
records were associated with the closest centroid. As assignments were made, the centroids underwent recalculations to 
represent the best center of their respective clusters. This iterative assignment and recalibration continued until the clusters 
stabilized, ensuring that the communication data was segmented to reflect its underlying patterns. Once segmentation was 
achieved, the integrity and distinctiveness of the clusters were critically assessed. The aim was to ensure that each cluster 
provided unique insights into different facets of electronic communication behaviors. The following steps explain the process 
of the K-means algorithm. 
 
Selection of K (Number of Clusters) 
Implementing the K-means clustering algorithm began by determining the optimal number of clusters, 𝐾𝐾. This was achieved 
using the Elbow Method, where the within-cluster sum of squares, WCSS, was calculated for a range of 𝐾𝐾 values. In 
mathematical terms, WCSS is represented as EQU (1) 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑  𝐾𝐾
𝑖𝑖=1 ∑  𝑥𝑥∈𝐶𝐶𝑖𝑖 ∥∥𝑥𝑥 − 𝜇𝜇𝑖𝑖∥∥2      (1) 

 
     WHERE 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is the within-cluster sum of squares, 𝑊𝑊𝑖𝑖 is the 𝑖𝑖th cluster, and 𝜇𝜇𝑖𝑖 is the centroid of 𝑊𝑊𝑖𝑖. By plotting 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 
against a range of values for 𝐾𝐾, the "elbow" point, where the rate of decrease sharply changes, was identified as the optimal 
𝐾𝐾. 
 
Initialization of Centroids 
Centroids were initialized using the "k-means++" method to minimize the chances of falling into local optima. The method 
involves: 

• Randomly selecting the first centroid from the data points. 
• For each data point, compute its distance from the nearest, previously chosen centroid. 
• Selecting the next centroid from the data points with probability proportional to the squared distance from the points 

nearest the existing centroid. 
 

Assignment 
Upon initialization, each data point 𝑥𝑥 was associated with the nearest centroid. The proximity was measured using the Euclidean 
distance, given by EQU (2): 

dist (𝑥𝑥, 𝜇𝜇𝑖𝑖) = �∑  𝑛𝑛
𝑗𝑗=1  �𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗�

2
     (2) 

      where 𝑛𝑛 is the number of features, 𝑥𝑥𝑗𝑗 is the 𝑗𝑗th feature of data point 𝑥𝑥, and 𝜇𝜇𝑖𝑖𝑗𝑗 is the j-th feature of centroid 𝜇𝜇𝑖𝑖. 
 
Centroid Update: After assignment, the centroid of each cluster was recalculated by averaging the data points in the cluster, 
EQU (3) 

𝜇𝜇𝑖𝑖 = 1
|𝐶𝐶𝑖𝑖|

∑  𝑥𝑥∈𝐶𝐶𝑖𝑖 𝑥𝑥      (3) 
Where |𝑊𝑊𝑖𝑖| is the number of data points in the cluster 𝑊𝑊𝑖𝑖. 
 
Convergence Criteria: The iterative assignment and update process continued until convergence, which was defined by: 

• Change in cluster assignment becoming less than a small, predefined threshold. 
• The movement of centroids between consecutive iterations is below a certain threshold. 
• Reaching a maximum predefined number of iterations. 

 
Evaluation: Post clustering, the quality of clusters was evaluated using the Silhouette Coefficient, EQU (4) 
 

𝑊𝑊(𝑥𝑥) = 𝑏𝑏(𝑥𝑥)−𝑎𝑎(𝑥𝑥)
max{𝑎𝑎(𝑥𝑥),𝑏𝑏(𝑥𝑥)}

     (4) 
     where 𝑎𝑎(𝑥𝑥) is the average distance from 𝑥𝑥 to the other points in its cluster, and 𝑏𝑏(𝑥𝑥) is the smallest average distance from 
𝑥𝑥 to points in a different cluster, minimized over clusters. 
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Interpretation:  On forming the clusters, each was scrutinized to ascertain its defining features. This included checking mean 
values of features within clusters and contrasting them with the overall dataset mean to identify distinguishing patterns. 
 
Algorithm: K-means_Clustering (Data, K) 
Input:  

• Data: Preprocessed communication dataset 
• K: Number of clusters 

Output:  
• Cluster assignments for each data record 

Initialization 
• Centroids = k-means++_initialization (Data, K) 
• Previous_Centroids = [ ] 
• while Centroids != Previous_Centroids: 

Assignment Step 
• For Each point in Data: Assign the point to the nearest centroid 

Store the current centroids before updating 
• Previous_Centroids = Centroids  

Update Step 
• For i = 1 to K: 
• Centroids[i] = mean of all points assigned to centroid i 
• End While 
• Return Cluster assignments for each data record 

 
The below Fig 1 shows how the k-means algorithm in general works: 

 
Fig 1. K-Means Algorithm 

 
IV.      RESULTS AND DISCUSSION 

Experiments utilized a system with an Intel Core i9-12900K CPU and an NVIDIA GeForce RTX 3090 GPU with 24 GB 
GDDR6X Memory. This hardware was paired with 128 GB of DDR4 RAM and storage options of a 2 TB NVMe SSD and a 
4 TB HDD. The chosen operating system was Ubuntu 20.04 LTS. For computations and analyses, Python 3.9 was employed, 
with libraries including Pandas, NumPy, and Scikit-learn. Within this study's framework, an analytical method was used to 
explore communication data from electronic devices. The initial steps involved segmentation, using the K-means clustering 
algorithm to divide the dataset into clusters, each showing different device communication patterns. This segmentation helped 
recognize user-device interaction trends, providing a detailed view of device usage. The analysis of communication frequency 
throughout the day for the clusters highlighted when device interactions occurred most frequently. Recognizing these patterns 
helps determine when devices are used the most. The Silhouette Coefficient analysis measured the success of the clustering 
method, confirming that the clusters were separate and cohesive. These analyses aim to deepen the understanding of device 
behavior, assisting manufacturers and developers in better aligning devices and services with user preferences.  
 
Cluster Distribution 
On finalizing the clusters, as shown in Fig 2, it was observed that: 

• Cluster 1 consisted of 4,386 records, predominantly from smartphones. These represented system-level broadcasts 
and app-specific communications. 

• Cluster 2, with 2,420 records, was majorly sourced from wearable tech and essentially encapsulated health metrics. 
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• Cluster 3, the smallest cluster with 2,886 records, mainly covered smart home device data, reflecting device-to-
device interactions. 

 
Fig 2. Cluster Distribution Analysis 

Cluster Characteristics 
Table 2 presents the analysis of the characteristics of features spread across each cluster, and the explanation is presented 
below: 

• Cluster 1 (Smartphones): 
o Most data records (60%) indicated user-initiated interactions, suggesting a high frequency of active user 

engagements. 
o The communication was dominated by external types (35%), which might correlate to app-specific 

communications. The presence of app names further suggests frequent usage of specific applications. 
o The prevalent use of Wi-Fi (70%) for communication indicates a stable network source, possibly hinting at 

usage in consistent environments like homes or offices. 
• Cluster 2 (Wearable Tech): 

o A significant portion of records (70%) was passive, indicating automatic data logging, possibly of vital 
metrics or device synchronization events. 

o The high reliance on Bluetooth (85%) implies short-range communications, typical of wearables 
synchronizing with nearby devices. 

o The data suggests that 70% of user commands hint at frequent user interactions, possibly for accessing 
specific data or device features. 

• Cluster 3 (Smart Home Devices): 
o A balanced distribution of internal (45%) and external (40%) communications suggests that smart home 

devices frequently communicate within and externally within a local network, possibly for updates or cloud 
data storage. 

o The high rate of passive interactions (60%) indicates automated device processes, like scheduled tasks or 
reactions to environmental changes. 

o The prominent use of NFC (45%) might represent proximity interactions between devices, such as a smart 
door lock engaging with a home security system. 

 
Analysis of Communication Frequency Across 24-hour Period 

Analyzing the frequency of communication across the three clusters reveals distinctive patterns that provide insights into 
device usage and behavior. 
       Cluster 1 (Smartphones): The frequency of communication for smartphones starts at a modest 100 records at midnight, 
experiencing a decline until around 5 a.m. This is expected as it aligns with typical sleeping hours. A noticeable surge begins 
at 6 a.m., peaking between 8 a.m. and 1 p.m. This can be attributed to users checking their phones upon waking up, followed 
by consistent usage during morning work hours. There's a slight dip in the early afternoon, but it remains relatively high, 
indicating continued daily usage. By evening, around 8 p.m., another increase is observed, possibly because users are winding 
down from work and using their phones for leisure. Post 10 p.m., a steady decline is evident, aligning with bedtime for many 
users. 
      Cluster 2 (Wearable Tech): Wearable tech shows minimal activity during the early hours, reflecting minimal interaction or 
data sync while users sleep. Starting from 5 a.m., there's a rise in communication frequency, likely due to users beginning their 
day and devices, especially fitness trackers, logging morning activities. The frequency maintains a relatively stable, albeit low, 
level throughout the day, indicating periodic data syncing or passive logging. The slight peaks around noon and early evening 
might be associated with users checking health metrics or engaging in physical activities.  

0 1,000 2,000 3,000 4,000 5,000

Cluster 1 (Smartphones)

Cluster 2 (Wearable Tech)

Cluster 3 (Smart Home Devices)

Test Records
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Table 2. Data Characteristics Distribution within Clusters 

Characteristic Cluster 1 
(Smartphones) 

Cluster 2 (Wearable 
Tech) 

Cluster 3 (Smart Home 
Devices) 

Communication_Type    
Internal 55% 20% 45% 
External 35% 10% 40% 

User-command 10% 70% 15% 
Protocol_Used    

Wi-Fi 70% 10% 50% 
Bluetooth 25% 85% 5% 

NFC 5% 5% 45% 
User_Interaction    

User-initiated 60% 30% 40% 
Passive 40% 70% 60% 

      Cluster 3 (Smart Home Devices): Smart home devices show a steady frequency during the morning, indicating continuous 
operation of specific devices, like thermostats or security systems. The increase observed from 7 a.m. onwards could be 
attributed to devices used in morning routines, such as smart coffee makers or voice assistants providing daily briefings. The 
highest activity is noted during the evening, from 8 p.m. to 10 p.m. This is likely when most household devices are active, with 
residents returning home from work using various smart home functionalities. 

The communication frequency clearly shows the diurnal patterns associated with different device categories. While 
smartphones are predominantly active during work hours, wearable tech shows a more distributed pattern, and smart home 
devices peak during early morning and late evening. These insights offer valuable information for manufacturers and developers 
to optimize device performance and user experience based on typical usage patterns in Fig 3. 

 

 
Fig 3. Analysis of Communication Frequency 

Analysis of Silhouette Coefficient over Different Cluster Numbers 
The Silhouette Coefficient is a metric used to calculate the goodness of a clustering algorithm. It measures how close each 
point in one cluster is to the points in the neighboring clusters. Its values range from -1 to 1, where a high value indicates that 
the object is well-matched to its cluster and poorly matched to neighboring clusters. Ideally, a coefficient closer to 1 indicates 
the best-defined clusters. 

 
Fig 4. Analysis of Silhouette Coefficient 
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From Fig 4, the following observations are found: 
• For K=2: The Silhouette Coefficient is 0.65. This suggests that when the dataset is divided into two clusters, the 

distinction between the clusters is reasonably straightforward, but there might be room for improvement. 
• For K=3: The coefficient increases to 0.72. This is the highest value among the provided cluster numbers, indicating 

that a three-cluster solution provides the best-defined clusters. The data points within each cluster are, on average, 
closer to each other in this configuration than in configurations with a different number of clusters. 

• For K=4: The coefficient drops slightly to 0.68. Although this is still a reasonably good value, the additional cluster 
might introduce some overlap or lessen the distinctiveness among clusters compared to the three-cluster solution. 

• For K=5 and K=6, The coefficient values decrease to 0.64 and 0.62, respectively. These decreasing values indicate 
that as we increase the number of clusters beyond 4, the distinction among clusters becomes progressively less clear. 
The added complexity of more clusters does not seem to contribute positively to the separation of data. 

     based on the Silhouette Coefficient values provided, partitioning the dataset into three clusters (K=3) appears to be the most 
optimal choice. The coefficient of 0.72 for K=3 suggests well-separated clusters, whereas increasing the number of clusters 
beyond this point results in reduced clustering quality. This information is invaluable when deciding the number of clusters to 
use, as it provides an objective measure of the clarity and distinction between clusters. 
 
Discussion 
In the study presented, unsupervised machine learning, notably the K-means clustering algorithm, was applied to segment 
communication data from various modern electronic devices. This segmentation aimed to elucidate device usage and 
communication patterns, which have implications for users and industry stakeholders. The key findings from the results are 
listed below: 

• The clear distinction between the types of electronic devices based on communication data highlights the potential of 
unsupervised machine learning in understanding user-device interaction patterns. 

• The insights derived, especially from smartphones and wearable tech clusters, can be instrumental for manufacturers 
and developers to enhance user experience and address specific user needs. 

• The anomalies in smart home device data during holiday seasons highlight the adaptive nature of modern smart homes 
but also underline the importance of flexible algorithms that can adjust to changed user behaviors. 

• Future work could delve deeper into sub-clusters within these broad categories, especially within smartphones, given 
their diverse usage patterns. 

V.   CONCLUSION AND FUTURE WORK 
In today's interconnected world, electronic devices generate vast amounts of communication data that hold valuable insights 
into device functionalities and user behaviors. This research used the K-means clustering algorithm to segment this data, 
effectively revealing patterns and trends. These insights, derived from the segmented clusters, offer manufacturers and 
developers a clear roadmap for optimizing device design, enhancing user experiences, and bolstering security measures. 
Furthermore, the success of this data-driven approach accentuates the importance of leveraging data analytics in modern 
electronics. By harnessing the power of such analytical techniques, the electronics industry can be better equipped to meet 
evolving user demands, address potential vulnerabilities, and ensure that devices are more efficient and tailored to their users.  
      As the momentum towards a data-centric world continues, the methodologies and findings of this study can serve as a 
guiding beacon for the development of future electronic innovations. 
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