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Abstract – The Internet of Things (IoT) has proliferated, transitioning from modest home automation to encompass sectors 
like healthcare, agriculture, transportation, and manufacturing. This evolution is characterized by devices' ability to 
autonomously gather, disseminate, and analyze data, leading to improved real-time decision-making, predictive insights, and 
customized user experiences. The ubiquity of IoT, while promising, introduces significant data security concerns. The vast 
number of interlinked devices and diverse and often insufficient security features make them vulnerable to cyber threats, 
emphasizing the need for robust security mechanisms. Intrusion Detection Systems (IDS) have traditionally acted as vital 
guards against such threats; however, with the ever-increasing data in the IoT, traditional IDS models, such as Naive Bayes, 
face processing speed and accuracy challenges. This paper introduces a novel model, "FE+NB," which merges advanced 
Feature Extraction (FE) with the Naive Bayes (NB) classifier. Central to this model is the "Temporal-Structural Synthesis" 
technique tailored for IoT traffic data, focusing on data compression, temporal and structural analyses, and Feature Selection 
(FS) using mutual information. Consequently, the model enhances efficiency and accuracy in Intrusion Detection (ID) in 
complex IoT networks. 
 
Keywords – Intrusion Detection, Feature Extraction, Naïve Bayes, Internet of Things, Accuracy. 

 
I. INTRODUCTION 

The evolution of the Internet of Things (IoT) has marked a transformative phase in the digital era, demonstrating unparalleled 
growth over recent years. Originating from mere home automation concepts, IoT has now branched out, permeating many 
sectors, including healthcare, agriculture, transportation, and manufacturing. The ability of devices to collect, share, and 
interpret data without human intervention has redefined operational efficiencies, enabling real-time decision-making, predictive 
analytics, and personalized user experiences [1]. From wearable health monitors and smart thermostats to interconnected 
industrial machines and smart city infrastructures, the footprint of IoT is vast, symbolizing a future where almost every device 
is interlinked, enhancing the overall quality of life and operational efficiency across fields. 
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     While the expansive growth of IoT presents numerous opportunities, it simultaneously contains plenty of challenges, 
particularly concerning data security [2]. With billions of devices interconnected, each transmitting and receiving data, the 
vulnerability to cyber threats has significantly heightened. These devices, often with limited security features, become prime 
targets for cyber-attacks, leading to data breaches, unauthorized access, and even large-scale network disruptions [3]. 
Furthermore, the vast heterogeneity of IoT devices and inconsistent security standards complicate the development of uniform 
protective measures [4]. Given that these threats can compromise personal privacy and enterprise-level information, there is an 
imperative need for robust security frameworks. Among the many protective solutions, Intrusion Detection Systems (IDS) 
emerge as pivotal, serving as the first line of defense by monitoring and flagging suspicious activities in real-time, ensuring the 
integrity of IoT ecosystems [5]. Fig 1 shows an architecture of Machine Learning (ML) and Deep Learning (DL)-based IDS. 
 

 
Fig 1. ML/DL-based IDS 

    
     IDS have long stood as sentinels against cyber threats, leveraging various algorithms and techniques to monitor and identify 
suspicious activities. Among these techniques, Naive Bayes (NB) has garnered attention for its probabilistic approach, which 
utilizes Bayes' theorem to calculate the likelihood of an event based on prior knowledge of related conditions [6]. While its 
simplicity and computational efficiency make it suitable for real-time analysis, the burgeoning data volume in IoT systems 
poses a challenge. As the IoT landscape continues to proliferate, the sheer magnitude of data generated by countless devices 
can overwhelm traditional IDS models, including NB, leading to slower response times and potential misclassifications [7]. 
Hence, to ensure the optimal performance of these models, addressing this data volume becomes critical. One strategic approach 
to manage this challenge is Feature Extraction (FE), which reduces vast datasets into their most salient attributes, thus reducing 
dimensionality and enhancing the efficiency of IDS [8]. Properly executed FE not only streamlines the data processing but also 
amplifies the accuracy and reliability of the IDS. 
     In light of the challenges existing IDS faces, particularly the struggle with the vast volumes of IoT data, a pressing need 
emerges for an advanced, refined approach. It is evident that while methods like NB have proven effective in many contexts, 
their performance can be significantly hampered without proper data management. Addressing this precise challenge, the 
proposed model, dubbed "FE+NB," integrates advanced FE techniques with the NB classifier to revolutionize intrusion 
detection in IoT systems. The crux of this model lies in its unique "Temporal-Structural Synthesis" approach to FE, which is 
meticulously tailored for IoT traffic data. This innovative method commences with data compression using autoencoders, 
transitioning through intricate temporal and structural analyses, and culminates with a rigorous Feature Selection (FS) based 
on mutual information metrics. As a result, the model refines the raw data into its most significant attributes, reducing 
redundancy and noise. When these meticulously extracted features are input into the NB classifier, the system achieves superior 
efficiency, precision, and speed, outperforming many traditional methods. Through this constructive interaction of 
sophisticated FE and the probabilistic strengths of NB, the FE+NB model promises a robust and scalable solution for IDS in 
increasingly complex IoT networks. 
     The paper is organized as follows: Section 2 presents the literature study, Section 3 presents the materials and methods used 
in this work, Section 4 presents the results, and Section 5 presents the conclusion of the work. 
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II.    LITERATURE SURVEY 
The domain of IDS for the IoT has garnered substantial research interest over recent years. A significant contribution comes 
from [9], who proposed a two-phase IDS focusing on different data types and deploying varied versions of the NB classifier 
for precise categorization, later using an elliptic envelope to classify benign data further. The method achieved impressive 
accuracy across multiple standard datasets, including NSL-KDD and CIC-IDS2017. This emphasis on data categorization and 
classification is mirrored by [10], who introduced a clustering-based classification technique using sophisticated algorithms 
like Anticipated Distance-based Clustering (ADC) in conjunction with Density-Based Spatial clustering of applications with 
noise (DBScan). The method utilized the Likelihood Naïve Bayes (LNB) for classification after clustering. Results 
demonstrated the superiority of the ADC-DBScan-LNB model in detecting intrusions. 
     Furthering the exploration into FS and classification, [11-13] leveraged deep FE and wrapper-based FS techniques, focusing 
on algorithms such as NB, to optimize the IDS.  
     Their approach reported high detection accuracy on the Aegean Wi-Fi Intrusion Dataset. Other notable models, like that by 
[14-18], introduced the Unified IDS for IoT, specifically tailored to handle a variety of attacks using the UNSW-NB15 dataset.  
     Simultaneously, [19-21] devised an M-IDM architecture that used real data from healthcare IoT devices to categorize 
intrusions. In an application-focused study, [22-23] developed a machine learning-based system to identify IoT network attacks, 
using real-world data from sensor networks and applying classifiers like Naïve Bayes for accurate intrusion classification. 
Collectively, these studies illuminate the evolution and potential of NB-centered approaches in IoT-IDS [24-25]. 
 

III.    PROPOSED MODEL 
Problem Definition 
Intrusion detection in loT systems entails classifying network activities as 'Normal' or 'Malicious'. We define this problem 
mathematically as follows:  
 
Variables 

• Let 𝑥𝑥 be a feature vector representing a loT network activity, where 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛). Each 𝑥𝑥𝑖𝑖 represents a specific 
FE from the network traffic, such as packet size transmission rate. 

• Let 𝐶𝐶 be a random variable representing the class of the network activity. 𝐶𝐶 can take two values: 
• 𝐶𝐶 = 0 representing 'normal' activity. 
• 𝐶𝐶 = 1 representing 'malicious' activity. 

 
Objective 
Determine the posterior probability 𝑃𝑃(𝐶𝐶 ∣ 𝑥𝑥) that a given network activity with feature vector 𝑥𝑥 belongs to class 𝐶𝐶. 
Using the Bayes Theorem: 
 

𝑃𝑃(𝐶𝐶 ∣ 𝑥𝑥) = 𝑃𝑃(𝑥𝑥∣𝐶𝐶)𝑃𝑃(𝐶𝐶)
𝑃𝑃(𝑥𝑥)

      (1) 
where: 

• 𝑃𝑃(𝐶𝐶 ∣ 𝑥𝑥) is the posterior probability. 
• 𝑃𝑃(𝑥𝑥 ∣ 𝐶𝐶) is the likelihood, which is the probability of observing feature vector 𝑥𝑥 given class 𝐶𝐶. 
• 𝑃𝑃(𝐶𝐶) is the prior probability of class 𝐶𝐶, representing this work's initial belief before observing 𝑥𝑥. 
• 𝑃𝑃(𝑥𝑥) is the evidence, which can be computed as 𝑃𝑃(𝑥𝑥) = 𝑃𝑃(𝑥𝑥 ∣ 𝐶𝐶 = 0)𝑃𝑃(𝐶𝐶 = 0) + 𝑃𝑃(𝑥𝑥 ∣ 𝐶𝐶 = 1)𝑃𝑃(𝐶𝐶 = 1). 

To classify a loT network activity, we would compute 𝑃𝑃(𝐶𝐶 = 0 ∣ 𝑥𝑥) and 𝑃𝑃(𝐶𝐶 = 1 ∣ 𝑥𝑥) and assign 𝑥𝑥 to the class with 
the higher probability, EQU (2) 

 
�0  if 𝑃𝑃(𝐶𝐶 = 0 ∣ 𝑥𝑥) > 𝑃𝑃(𝐶𝐶 = 1 ∣ 𝑥𝑥)
1  otherwise 

     (2) 
 

Problem Statement 
Given a training dataset 𝐷𝐷 = ��𝑥𝑥(1),𝐶𝐶(1)�, �𝑥𝑥(2),𝐶𝐶(2)�, … , �𝑥𝑥(𝑚𝑚),𝐶𝐶(𝑚𝑚)�� of 𝑚𝑚 labelled network activities, train a NB classifier 
to approximate the likelihoods 𝑃𝑃(𝑥𝑥𝑖𝑖 ∣ 𝐶𝐶) for each feature 𝑥𝑥𝑖𝑖 and prior probabilities 𝑃𝑃(𝐶𝐶) to effectively classify new unseen loT 
network activities. 
 
Dataset 
The research relies on publicly available datasets to study intrusion detection in IoT systems. Selected sources include the 
CICIDS2017 and NSL-KDD. These datasets provide a range of traffic from benign interactions to various attack vectors. FE 
from these datasets focuses on network packet attributes: source and destination IP addresses, ports, protocol types, and 
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timestamps. Additionally, statistical features such as mean packet size, standard deviation of packet size, packet rate, and byte 
rate are computed. The datasets also offer content details, like flags and payload lengths, and temporal metrics, such as the 
number of packets in the previous minute and the time since the last packet. Data preprocessing is essential for dataset quality. 
Corrupted packets are removed, and missing values are handled using interpolation methods. To balance the dataset, the 
Synthetic Minority Over-sampling Technique (SMOTE) is applied. All features undergo the Min-Max normalization technique 
to fit within a range of [0,1]. 

Table 1. Dataset Description 

Dataset Number of Entries 
(Approx.) 

Number of 
Features Classes and Scenarios 

CICIDS2017 Flows: 2,830,540 
Packets: 11,522,402 Flows: 80+ 

Multi-class scenarios include both 
benign and several types of malicious 

traffic. 
NSL-KDD ~150,000 41 Normal, U2R, R2L, Probe, DoS 

 
• CICIDS2017: The dataset contains flow-based and packet-based data, resulting in over 2.8 million flows and 11.5 

million packets. Each flow is characterized by more than 80 features. Given its high dimensionality, multi-class labels, 
and class imbalances, CICIDS2017 is complex and challenging, making it particularly valuable for rigorous 
evaluations of IDS. 

• NSL-KDD: An enhanced version of the KDD Cup '99 dataset, NSL-KDD resolves some of the older dataset's issues. 
With 41 features, it captures diverse network behaviors, classifying them into five primary categories: Normal 
(benign), U2R (User to Root attack), R2L (Remote to Local attack), Probe (surveillance and probing), and DoS (Denial 
of Service). Due to its assortment of attack types, NSL-KDD is frequently used for constructing and benchmarking 
IDS. 
 

 
 

Fig 2. Proposed IDS Architecture 
 

Proposed IDS  Using Feature Extraction with the Naive Bayes Classifier (FE+NB) Model 
Fig 2 depicts the proposed IDS model. Upon receiving input, the data undergoes preprocessing using Min-Max normalization, 
ensuring its readiness for the FE phase. This phase is critical, extracting high-quality features tailored for IoT traffic data. It 
starts with data compression via autoencoders, followed by time-series decomposition to identify inherent traffic patterns. A 
network topology analysis then provides a structural analysis of the IoT network, identifying potential vulnerabilities. The 
extracted features are further refined using the mutual information method, ensuring relevance for classification. With these 
features, the NB classifier is employed, calculating the probability of each instance being categorized as "normal" or "attack." 
The subsequent sections offer a detailed exploration of these FE techniques and the classifier, each with their respective 
algorithms. 
 
Feature Extraction 
Accurate threat detection in IoT networks hinges on the quality of features used in the classification models. This section 
outlines a sequential approach to FE tailored for IoT traffic data. The process starts with data compression, transitions through 
temporal and structural analyses, and concludes with FS based on their relevance to the classification task. Each stage addresses 
the unique challenges and characteristics of IoT network traffic. 
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Feature Embedding with Autoencoders 
Initially, the dataset is subjected to feature embedding using autoencoders. At this stage, the high-dimensional raw input data 
is transformed into a more condensed representation. Autoencoders achieve this by attempting to replicate the original data. 
These neural networks reduce noise and redundancies, capturing only the most salient features. Autoencoders can transform 
raw input features into a more compressed representation. Let 𝑋𝑋 be the input data matrix where each row represents an instance 
and each column a feature. The autoencoder's goal is to minimize the difference between 𝑋𝑋 and its reconstruction �̂�𝑋 through 
encoding and decoding processes, EQU (3) 
 

�̂�𝑋 = 𝑓𝑓decode (𝑓𝑓encode (𝑋𝑋; 𝜃𝜃𝑒𝑒);𝜃𝜃𝑑𝑑)                            (3) 
 
Where: 

• 𝑓𝑓encode  represents the encoder function with parameters 𝜃𝜃𝑒𝑒. 
• 𝑓𝑓decode  represents the decoder function with parameters 𝜃𝜃𝑑𝑑. 

The loss, typically the Mean Squared Error (MSE), is given by EQU (4) 
 

𝐿𝐿(𝑋𝑋, �̂�𝑋) = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̂�𝑥𝑖𝑖)2     (4) 

 
Harnessing the power of autoencoders, the condensed data representation is now more apt for temporal analysis. The intent is 
to unearth patterns that unfold over time, which might be crucial indicators in IoT traffic. 
 
Time-Series Decomposition for Temporal Features 
The condensed data is subsequently decomposed to reveal inherent temporal structures. This decomposition breaks down the 
data into trend, seasonality, and residuals, offering a more granular view of traffic patterns. Identifying such patterns aids in 
discerning regular behavior from potential threats. Given a time series 𝑆𝑆𝑡𝑡, it is decomposed into three components: trend 𝑇𝑇𝑡𝑡, 
seasonality 𝑆𝑆𝑡𝑡, and residual 𝑅𝑅𝑡𝑡, EQU (5). 
 

𝑆𝑆𝑡𝑡 = 𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡 + 𝑅𝑅𝑡𝑡                             (5) 
 

• Trend Component: Captured using moving averages. 
• Seasonality Component: Extracted by analyzing periodic fluctuations in the data. 
• Residual Component: It is the difference between the original series and the sum of the trend and seasonality 

components: 𝑅𝑅𝑡𝑡 = 𝑆𝑆𝑡𝑡 − (𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡). 
 
     While temporal features present a sequential view of the data, understanding the broader structural relationships within the 
network offers insights into its vulnerability and dynamics. Having discerned temporal aspects, it is pivotal to assess the broader 
structural intricacies of the network. This step pinpoints vulnerabilities and reveals overarching dynamics. 
 
Network Topology Analysis 
The dataset, with its highlighted temporal features, is now mapped onto a network graph for structural analysis. Here, nodes 
represent devices or endpoints, while edges signify interactions. Exploring centrality measures and modularity can spotlight 
potential primary targets for network threats or identify tightly-knit communities in the network. 

For a given network graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of vertices (nodes) and 𝐸𝐸 is the set of edges: 
 

Centrality Measures, EQU (6) to EQU (8) 
 

                                  Degree Centrality: 𝐶𝐶𝐷𝐷(𝑣𝑣) = degree (𝑣𝑣)
|𝑉𝑉|−1

                  (6)  
  

Closeness Centrality: 𝐶𝐶𝐶𝐶(𝑣𝑣) = |𝑉𝑉|−1
∑𝑢𝑢∈𝑉𝑉 𝑑𝑑(𝑣𝑣,𝑢𝑢)

                                       (7) 

Betweenness Centrality: 𝐶𝐶𝐵𝐵(𝑣𝑣) = ∑𝑠𝑠≠𝑣𝑣≠𝑡𝑡  
𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣)
𝜎𝜎𝑠𝑠𝑠𝑠

                           (8) 
 

Where 𝑑𝑑(𝑣𝑣,𝑢𝑢) is the shortest path between nodes 𝑣𝑣 and 𝑢𝑢,𝜎𝜎𝑠𝑠𝑡𝑡 is the total number of shortest paths from node 𝑠𝑠 to 
node 𝑡𝑡, and 𝜎𝜎𝑠𝑠𝑡𝑡(𝑣𝑣) is the number of those paths that pass through 𝑣𝑣. 
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Cluster Analysis: The Modularity 𝑄𝑄 is used to measure the strength of the network's division into clusters or 
communities, EQU (9) 

𝑄𝑄 = 1
2𝑚𝑚

∑  𝑣𝑣𝑣𝑣 �𝐴𝐴𝑣𝑣𝑣𝑣 −
𝑘𝑘𝑣𝑣𝑘𝑘𝑤𝑤𝑤𝑤
2𝑚𝑚

� 𝛿𝛿(𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑣𝑣)     (9) 
 
       Where 𝐴𝐴𝑣𝑣𝑣𝑣 is the adjacency matrix, 𝑘𝑘𝑣𝑣 is the degree of node 𝑣𝑣,𝑚𝑚 is the number of edges, 𝛿𝛿(𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑣𝑣) is 1 if nodes 𝑣𝑣 and 𝑤𝑤 
are in the same community and 0 otherwise. 

After the structural exploration, the FEs are scrutinized to ascertain their relevance for the classification task. This ensures 
that only the most informative features steer the classification. 
 
Mutual Information for Feature Selection 
The Mutual Information metric evaluates the degree of dependency between each feature and the target classification. By 
gauging their shared information, features are ranked, ensuring that the most pertinent ones are prioritized in the detection 
process. Given two random variables X (features) and Y (classes), the mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌) is calculated as EQU (10) 
 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = ∑  𝑥𝑥∈𝑋𝑋 ∑  𝑦𝑦∈𝑌𝑌 𝑝𝑝(𝑥𝑥,𝑦𝑦)log � 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

�     (10) 
 
      where 𝑝𝑝(𝑥𝑥,𝑦𝑦) is the joint probability, and 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝑦𝑦) are the marginal probabilities. 
Features with higher mutual information scores concerning the target class are more relevant and prioritised. 
      These methods extract a multi-faceted and comprehensive set of features, laying a robust foundation for the subsequent 
classification tasks. 
 
Algorithm: FE based on Temporal-Structural Synthesis 
Input: 

• Dataset 𝐷𝐷 with raw features 
Output: 

• Processed dataset 𝐷𝐷′ with extracted features 
Steps:  

• Feature Embedding with Autoencoders 
      Initialize autoencoder with encoder function 𝑓𝑓encode  and decoder function 𝑓𝑓decode. . 
      Train the autoencoder on dataset 𝐷𝐷 to minimize the reconstruction loss. 
      Transform 𝐷𝐷 using the trained encoder to obtain a compressed representation 𝐷𝐷𝑐𝑐 . 

• Time-Series Decomposition for Temporal Features 
      For each time series 𝑆𝑆𝑡𝑡 in 𝐷𝐷𝑐𝑐  : 
      Decompose 𝑆𝑆𝑡𝑡 into trend 𝑇𝑇𝑡𝑡, seasonality 𝑆𝑆𝑡𝑡′, and residual 𝑅𝑅𝑡𝑡. 
      Append 𝑇𝑇𝑡𝑡 , 𝑆𝑆𝑡𝑡′, and 𝑅𝑅𝑡𝑡 to dataset 𝐷𝐷𝑐𝑐  as new features. 

• Network Topology Analysis 
      Represent the dataset 𝐷𝐷𝑐𝑐  as a network graph 𝐺𝐺(𝑉𝑉,𝐸𝐸). 
      For each node 𝑣𝑣 in 𝑉𝑉 : 

• Compute Degree Centrality 𝐶𝐶𝐷𝐷(𝑣𝑣). 
       Compute Closeness Centrality 𝐶𝐶𝐶𝐶(𝑣𝑣). 
       Compute Betweenness Centrality 𝐶𝐶𝐵𝐵(𝑣𝑣). 

• Perform cluster analysis to determine the modularity 𝑄𝑄 of 𝐺𝐺(𝑉𝑉,𝐸𝐸). 
       Append centrality measures and 𝑄𝑄 to the dataset 𝐷𝐷𝑐𝑐  as new features. 

• Mutual Information for Feature Selection 
       For each feature 𝑋𝑋 in 𝐷𝐷𝑐𝑐  and target class 𝑌𝑌 : 
       Compute mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌). 
       Rank features based on their 𝐼𝐼(𝑋𝑋;𝑌𝑌) scores. 
       Select the top 𝑁𝑁 features with the highest scores to form a dataset 𝐷𝐷′. 

• Return the processed dataset 𝐷𝐷′. 
 
NB Model Implementation for IDS Classification 
The NB classifier is rooted in Bayes' theorem, which computes the probability of an event based on prior knowledge of related 
conditions. It gets its "naive" label from the assumption that every feature in the dataset is independent of the others when 
considering the class variable. Mathematically, Bayes' theorem can be framed as EQU (11) 
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𝑃𝑃(𝑌𝑌 = 𝑦𝑦 ∣ 𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃(𝑋𝑋=𝑥𝑥∣𝑌𝑌=𝑦𝑦)×𝑃𝑃(𝑌𝑌=𝑦𝑦)
𝑃𝑃(𝑋𝑋=𝑥𝑥)

    (11) 
 
      Here, 𝑃𝑃(𝑌𝑌 = 𝑦𝑦 ∣ 𝑋𝑋 = 𝑥𝑥) stands for the posterior probability, 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 ∣ 𝑌𝑌 = 𝑦𝑦) denotes the likelihood, 𝑃𝑃(𝑌𝑌 = 𝑦𝑦) is the 
class's prior probability, and 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) is the predictor's prior probability. In the realm of intrusion detection, 𝑌𝑌 symbolizes the 
class (e.g., "normal" or "attack"), and 𝑋𝑋 represents the features derived from network traffic. To train the NB Classifier, the 
initial step is to calculate the prior probabilities for every class present in the training dataset using the EQU (12): 

 
𝑃𝑃(𝑌𝑌 = 𝑦𝑦) =  Number of occurrences of class 𝑦𝑦

 Total number of instances 
    (12) 

 
     Once established, every feature 𝑋𝑋𝑖𝑖 and for each class 𝑦𝑦, the likelihood is ascertained with EQU (13) 

 
𝑃𝑃(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∣ 𝑌𝑌 = 𝑦𝑦) =  Number of instances with 𝑋𝑋𝑖𝑖=𝑥𝑥𝑖𝑖 in-class 𝑦𝑦

 Total number of instances in class 𝑦𝑦
                        (13) 

 
      Having set the foundational probabilities, the classification of a fresh instance with features 𝑥𝑥 hinges on calculating the 
posterior probability for each possible class 𝑦𝑦. This is achieved by multiplying the prior probability of 𝑦𝑦 with the likelihoods 
of all features given EQU (14) 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦 ∣ 𝑋𝑋 = 𝑥𝑥) ∝ 𝑃𝑃(𝑌𝑌 = 𝑦𝑦) × ∏  𝑖𝑖 𝑃𝑃(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∣ 𝑌𝑌 = 𝑦𝑦)    (14) 
 
     The given instance is then attributed to the class 𝑦𝑦, which maximizes this posterior probability. After the classification 
process, the NB classifier outputs the probability scores for each class corresponding to the input instances. These scores 
indicate the likelihood of each instance belonging to a particular class. Consequently, by comparing these likelihoods, a 
definitive classification label, either "normal" or "attack", is assigned to each instance. This systematic probabilistic assessment 
provides a nuanced perspective, enabling the identification of potential threats and an understanding of their relative likelihood. 
This distinction can be instrumental in prioritizing responses in real-world intrusion detection scenarios. 
 

Algorithm: Feature-based NB Classifier for IDS 
Input: Training set 𝐷𝐷 containing feature vectors 𝑥𝑥(𝑖𝑖)and their corresponding class labels 𝐶𝐶(𝑖𝑖), Testing set 𝑆𝑆 containing 
feature vectors. 
Output: Classified labels for the testing set 𝑆𝑆. 
Initialize Counters: 

Create dictionaries (or arrays) for class priors 𝑃𝑃�𝐶𝐶(𝑖𝑖)� and feature likelihoods 𝑃𝑃�𝑥𝑥𝑗𝑗 ∣ 𝐶𝐶(𝑖𝑖)� 
Compute Class Priors: 

For each class 𝐶𝐶(𝑖𝑖) in 𝐷𝐷, EQU (15) 
Calculate 𝑃𝑃�𝐶𝐶(𝑖𝑖)� =  Number of occurrences of class 𝐶𝐶(𝑖𝑖)

 Total number of instances in 𝐷𝐷
     (15) 

Compute Likelihoods: 
For each feature 𝑥𝑥𝑗𝑗 in 𝐷𝐷  and for each class 𝐶𝐶(𝑖𝑖), EQU (16) 

Calculate �𝑥𝑥𝑗𝑗 ∣ 𝐶𝐶(𝑖𝑖)� =
 Number of instances with 𝑥𝑥𝑗𝑗 in class 𝐶𝐶(𝑖𝑖)

 Total number of instances in class 𝐶𝐶(𝑖𝑖)     (16) 
Classify Instances in Testing Set: 

For each instance 𝑥𝑥 in 𝑆𝑆 : 
Initialize max_posterior as negative infinity and predicted_class as null. 
For Each class 𝐶𝐶(𝑖𝑖), EQU (17) 

Compute posterior  𝑃𝑃�𝐶𝐶(𝑖𝑖) ∣ 𝑥𝑥� ∝ 𝑃𝑃�𝐶𝐶(𝑖𝑖)� × ∏𝑗𝑗 𝑃𝑃�𝑥𝑥𝑗𝑗 ∣ 𝐶𝐶(𝑖𝑖)� (17) 
If posterior > max_posterior: 

Max_posterior = posterior 
Predicted_class = 𝐶𝐶(𝑖𝑖) 

Assign predicted_class to instance 𝑥𝑥. 
Return: 

Return the classified labels for all instances in 𝑆𝑆. 
 

IV.      EXPERIMENTAL ANALYSIS 
In the experimental analysis, the proposed model was tested on a system equipped with an Intel Core i7-10750H 6-Core 
Processor, 32 GB DDR4 RAM, 1TB NVMe SSD storage, and an NVIDIA GeForce RTX 2070 Super graphics card with 8GB 
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GDDR6. The software environment consisted of Ubuntu 20.04 LTS as the operating system, complemented by Python 3.8 for 
coding purposes. Key libraries like Scikit-learn were used for the NB implementation, while TensorFlow and Keras were 
employed for feature embedding tasks.  
     The dataset was partitioned into training and testing sets, with a 70:30 split ensuring a balanced representation. The training 
process for the NB model leveraged this training set. Key hyperparameters driving this training included a learning rate of 0.01, 
a batch size of 256 and 50 epochs, and a regularization parameter (alpha) of 0.001. These hyperparameters were selected based 
on a preliminary grid search to ensure optimized performance for the classifier. 
     The chosen evaluation metrics included Accuracy, which gauged the correct predictions made by the model; Precision, 
which indicated the ratio of True Positive (TP) predictions to the total positive predictions; Recall, which represented the 
number of true optimistic predictions against the total actual positives, F1-score, acting as the harmonic mean between precision 
and recall, and the ROC-AUC that demonstrated the model's ability to differentiate between the classes. To position the 
performance of this proposed NB classifier within a broader context, the results were compared against the following standard 
models, often utilized in intrusion detection: 

Decision Trees: A non-parametric supervised learning method used for classification and regression. The decision tree 
maps features to outcomes, one decision at a time. 
Random Forest: An ensemble learning method that creates a 'forest' from many decision trees. At the time of prediction, 
the mode of the decisions from individual trees is considered. 
Support Vector Machines (SVM): A representation of examples as points in space, mapped so that separate categories are 
divided by a clear gap that is as wide as possible. 
Standard NB: A probabilistic classifier based on Bayes' theorem with an assumption of independence between features. It 
is particularly suited for high-dimensional datasets. 

 

 
Fig 3. Precision across Epochs for Different Models 

 
     After training on the feature-engineered dataset, the NB classifier's performance was benchmarked against these models, 
considering the same features and experimental conditions. The outcomes serve as an indicator of where the proposed approach 
stands in comparison to established methods. Fig 3 compares the model’s performance against accuracy, precision, recall, and 
F1-score. When investigating the accuracy across epochs for the various models, it is evident that the FE+NB (proposed model) 
consistently outperforms its counterparts. Beginning with an accuracy of 93.0% at epoch 10, it exhibits a steady ascent to 96.5% 
by epoch 50. Comparatively, the Decision Trees and SVM demonstrate lower accuracies throughout, while the Random Forest 
and Standard NB models show competitive yet lower scores than the proposed model. By epoch 50, the gap in accuracy between 
the FE+NB and its closest competitor, the Random Forest, is a significant 2%. The precision metric presents a similar narrative. 
FE+NB starts at a robust 94.0% and elevates to an impressive 97.0% by epoch 50. Decision Trees and SVM, once again, lag 
behind the other models. RF's precision climbs reasonably but is outshined by the FE+NB model across all epochs. Notably, 
the Standard NB displays an admirable progression, though it does not surpass the proposed model's precision. 
      Regarding recall, FE+NB initiates with a 93.5% score at epoch 10 and culminates at 96.5% by epoch 50. All other models, 
including the Standard NB, start at a lower baseline and, despite improvements, fail to match or exceed the recall of the FE+NB 
model. This highlights the proposed model's capability to identify TP classifications accurately. When we analyze the F1-score, 
which balances precision and recall, the proposed model's prowess becomes even more evident. Beginning at a strong 92.0% 
at epoch 10, it peaks at 95.5% by epoch 50. The other models, though showing growth, do not challenge the supremacy of the 
FE+NB. Notably, the Decision Trees and SVM scores are consistently outpaced by both ensemble methods and the FE+NB 
model.  
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Fig 3. AUC across Epochs for Different Models 

 
      Lastly, as shown in Fig 3, the Area Under Curve (AUC) values, which represent the model's ability to differentiate between 
classes, reiterate the dominance of the proposed model. From an AUC of 0.928 at epoch 10 to 0.960 at epoch 50, the FE+NB 
model maintains a lead. While the Random Forest and Standard NB present commendable AUC values, neither surpasses the 
proposed model. 
 

V.    CONCLUSION AND FUTURE WORK 
The realm of the Internet of Things (IoT) has experienced exponential growth, revolutionizing industries and everyday life. 
With this expansion, however, comes the imperative need for robust data security measures. While traditional Intrusion 
Detection Systems (IDS) offer a line of defense, their efficacy is often challenged by IoT data's sheer volume and complexity. 
Addressing this critical gap, the "FE+NB" model presents a pioneering approach, merging the strengths of sophisticated FE 
with the Naive Bayes (NB) classifier. Through rigorous experimentation and analysis, this model has demonstrated superior 
performance metrics, highlighting its potential to become a benchmark in IoT security.  
     As IoT continues its trajectory towards a more interconnected future, solutions like the "FE+NB" model stand as beacons, 
ensuring that data security and intrusion detection evolve in a cycle with technological advancements. 
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