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Abstract – The last decade has seen a significant rise in the adoption and development of Electric Vehicles (EVs), driven by 
environmental concerns, technological advancements, and governmental support. Batteries, central to EVs, have witnessed 
groundbreaking innovations in terms of energy density, charging speeds, and longevity. Expanding charging infrastructure and 
the automotive industry's investment in EV research have made them more mainstream. Effective Battery Management (BM), 
which includes monitoring essential parameters and thermal management, is critical for the longevity and reliability of EVs. 
Accurate charge prediction, in particular, aids in trip planning, reduces range anxiety and facilitates cost-effective charging 
coordinated with dynamic electricity pricing. Traditional models like linear regression and Autor-Rgressive Integrated Moving 
Average (ARIMA) have been standard for EV battery charge prediction. However, these often struggle with the dynamic nature 
of EV charging data. Even models like the vanilla Long Short-Term Memory (LSTM), which are adept at recognizing long-
term patterns, require meticulous hyperparameter tuning. This work introduces the DWT-DE-LSTM model, which utilizes the 
Discrete Wavelet Transform (DWT) to dissect battery charging data at different resolutions and a Differential Evolution (DE) 
strategy for model optimization. Tests using the Panasonic 18650PF Li-ion Battery Dataset revealed the superior efficacy of 
the DWT-DE-LSTM model, emphasizing its suitability for real-world battery charge prediction. 
 
Keywords – EV, Charge Prediction, LSTM, Differential Evolution, Battery Management, Energy. 
 

I. INTRODUCTION 
The last decade has witnessed a meteoric rise in the adoption and development of Electric Vehicles (EVs), marking a change 
in basic assumptions in global transportation. As concerns over environmental sustainability, climate change, and depleting 
fossil fuel reserves intensify, EVs present a promising alternative, embodying the vision of a cleaner and greener future. 
Governments worldwide, recognizing EVs' environmental and economic potential, have implemented various incentives, from 
tax breaks to purchase subsidies, accelerating their adoption rates. Technological advancements have further catalyzed this 
growth [1]. Batteries, the heart of EVs, have seen tremendous innovations, leading to enhanced energy densities, faster 
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charging, and extended lifespans. Simultaneously, the proliferation of charging infrastructure has made EVs more accessible 
and convenient for the average consumer. Moreover, the automotive industry, traditionally reliant on internal combustion 
engines, is transforming, with major players investing heavily in EV research, development, and production [2]. This collective 
momentum towards EVs, driven by policy, technology, and market dynamics, signifies not just a trend but a comprehensive 
movement toward sustainable transportation. 
      Battery Management (BM) plays a pivotal role in the efficient operation of EVs. Proper BM ensures optimal charging and 
discharging cycles, safeguards against overcharging or deep discharging, and monitors critical parameters like voltage, current, 
and temperature [3]. These parameters are crucial as they impact the battery's health and, by extension, the vehicle's reliability 
[4]. Moreover, thermal management within the battery system is vital to prevent overheating, which can lead to reduced battery 
life or, in extreme cases, pose safety risks. Amidst these complexities, charge prediction emerges as a critical component. 
Accurate forecasting of the battery's charge level aids drivers in planning their trips, reduces range anxiety, and ensures that 
the battery operates within its optimal limits [5].  
      Furthermore, with the growth of smart grids and dynamic electricity pricing, precise charge prediction can facilitate cost-
effective charging by enabling EVs to draw power during off-peak hours [6]. Effective BM, underscored by accurate charge 
prediction, is foundational to the promise of EVs as a sustainable and reliable mode of transportation. 
      The EV battery charge prediction landscape has been characterized by traditional models, such as linear regression, support 
vector machines, and more straightforward time series forecasting techniques like ARIMA [7]. While these models have shown 
promise in scenarios with consistent charging patterns, they often falter when confronted with the non-linear and dynamic 
nature of real-world EV charging data. Another widely adopted model is the vanilla LSTM, which can capture long-term 
dependencies in sequential data but requires fine-tuned hyperparameters for optimal performance [8]. One of the significant 
challenges with these models is their inability to simultaneously process information across different time scales, missing both 
granular short-term variations and overarching long-term trends. Additionally, selecting hyperparameters in models like 
LSTMs can be complex, often requiring exhaustive trial-and-error methods [9]. To address the above limitations, this work 
proposed the DWT-DE-LSTM model. This innovative approach harnesses the strength of the Discrete Wavelet Transform 
(DWT) to break down battery charging data into varying resolutions, offering a clear snapshot of short-term fluctuations and 
long-term patterns.  
      Furthermore, the Differential Evolution (DE) strategy aids in fine-tuning the model's parameters, ensuring its precision. 
Together, these components aim to produce a more accurate and reliable battery charge prediction, addressing the gaps left by 
previous models. Employing the Panasonic 18650PF Li-ion Battery Dataset for experiments, the proposed model was 
benchmarked against other established models. Our results underscored the superior performance of the DWT-DE-LSTM, 
reinforcing its potential as a robust solution for battery charge prediction in real-world applications [10]. 
       The research work is organized as follows: Section 2 presents the literature review, Section 3 presents the methodologies 
and the proposed work, Section 4 presents the experimental analysis, and Section 5 presents the conclusion of future work. 
 

II. LITERATURE REVIEW 
Recent advancements in the Electric Vehicle (EV) charging prediction domain have highlighted diverse methodologies, each 
shedding light on distinct aspects of this complex problem. [11] introduced a Deep Learning (DL)--based LSTM recurrent 
neural network predictor model. The unique aspect of this model is the integration of the Empirical Mode Decomposition 
(EMD) for data decomposition and the Arithmetic Optimization Algorithm (AOA) for parameter tuning. On the EV charging 
dataset from Georgia Tech, Atlanta, USA, the proposed model surpassed previous methods, achieving an impressive 97.14% 
prediction accuracy.  
      Similarly, [12] developed a model based on the LSTM neural network to forecast fast-charging power demand. Real-world 
datasets from Jeju Island, South Korea, served as their testbed, wherein their proposed model was deemed superior in 
aggregating fast-charging power demand. [13] brought forth a mixed LSTM neural network, which, unlike traditional LSTMs, 
segmented various feature types and processed them distinctly within its mixed neural network architecture. Benchmarked 
against numerous innovative Machine Learning (ML) and DL models using the EV charging data from the city of Dundee, 
UK, this method exhibited exceptional predictive accuracy. 
      On the other hand, [14] combined the prowess of XGBoost and LSTM for their charging load forecasting model. Unique 
feature engineering, phase space reconstruction, and the LSTM model's training underscored this method, which, upon 
validation, proved valuable for high permeability EV load forecasting. [15] innovated with an LSTM-RNN model, integrating 
extended input and constrained output. By introducing an additional slow time-varying information window and constraining 
the output variation, they achieved enhanced SOC estimation performance on LiFePO4 battery datasets.  
      In [16-18] deployed a DL approach called Sequence to Sequence (Seq2Seq) for time-series forecasting of monthly 
commercial EV charging. Against other time series and ML models, their Seq2Seq method demonstrated superior multi-step 
prediction capabilities on Utah and Los Angeles datasets. 
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      Given the multitude of methods presented in these studies, each with its strengths and distinctions, it becomes evident that 
while significant strides have been made, there remains scope for a model that seamlessly integrates various strengths while 
addressing the existing gaps. The DWT-DE-LSTM model seeks to fill this void, offering an evolved approach to battery charge 
prediction, which is integral for the burgeoning EV industry [19-20]. 
 

III.    METHODOLOGIES 
DWT for Time Series Decomposition 
The Discrete Wavelet Transform (DWT) offers a method for multi-scale analysis of time series data. Distinct from the Fourier 
Transforms that highlight frequency aspects, wavelets can concurrently depict data in the time and frequency realms. This 
combined representation positions DWT as apt for time series data that exhibits changing patterns. DWT's appeal in this study 
is attributed to its capability to emphasize distinct time series features, dividing data into approximations and intricate specifics. 
This stratified view helps discern patterns that might be overlooked in a single-scale analysis. Leveraging models like LSTM 
for prediction benefits, as data highlighting complex patterns across multiple scales can enhance forecast accuracy [21-23]. 
LSTM's structure is geared towards modeling extended dependencies, and when paired with data refined by DWT, the 
combined effect promises improved forecasting outcomes in Fig 1.  
 

 
 

Fig 1. DWT Decomposition 
 
    To provide a concrete visualization of the DWT process, consider Fig 1. In Fig 1, the signal, represented as 𝑥𝑥[𝑛𝑛], undergoes 
multiple stages of decomposition using two filters: a low-pass filter (denoted by ℎ[𝑛𝑛] ) and a high-pass filter (denoted by 𝑔𝑔[𝑛𝑛]). 
At each level of decomposition, the signal is split into approximation (low-frequency) and detail (high-frequency) coefficients. 
These coefficients provide multi-resolution representations of the original signal, enabling detailed insights into its 
characteristics at varying scales. 
 
DWT for Decomposing EV Battery Charging Time Series Data 
When this work uses this on data like EV battery charging, DWT helps us see patterns in the overall charging process and the 
short-term changes. Using DWT on the EV battery charging data means figuring out specific wavelet coefficient values           
[24-25]. These values give us information about the charging data at distinct levels. This work gets these values by comparing 
our charging data to standard wavelet function patterns. 

The mathematical embodiment of the wavelet coefficient can be delineated as EQU (1) 
𝑊𝑊(𝛼𝛼,𝛽𝛽) = 𝑘𝑘−

𝛼𝛼
2 ∑  𝑁𝑁

𝑛𝑛=0 Φ �𝑛𝑛−𝛽𝛽⋅𝑘𝑘
𝛼𝛼

𝑘𝑘𝛼𝛼
� ⋅ 𝑥𝑥(𝑛𝑛)                          (1) 

where: 
• 𝑊𝑊(𝛼𝛼,𝛽𝛽) is the wavelet coefficient at a given scale 𝛼𝛼 and translation 𝛽𝛽. 
• Φ represents the chosen wavelet function. 
• 𝑥𝑥(𝑛𝑛) is the time series entry of the EV battery charging rate at time instance 𝑛𝑛. 
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• 𝑁𝑁 is the total number of time points in the data. 
• The multiplier 𝑘𝑘−

𝛼𝛼
2  acts as a normalization component, ensuring the wavelet holds consistent energy across varying 

scales. 
By breaking down the EV battery charging data using DWT, this work obtains a series of coefficients that narrate the charging 
behavior across multiple resolutions. This granular understanding is instrumental for subsequent LSTM predictive modelling 
phases. 
 
Differential Evolution Optimized LSTM for Battery Charging Forecasting (DE-LSTM) 
After transforming the EV battery charging data using the Discrete Wavelet Transform (DWT), the next challenge is to predict 
the charging patterns optimally. Here, Long Short-Term Memory (LSTM) networks, known for their prowess in modeling 
sequential data, are employed. However, the hyperparameters of an LSTM can dramatically affect its performance. To ensure 
that the LSTM is tuned optimally for this task, DE-a robust optimization strategy is used. By combining the adaptive search 
capabilities of DE with the sequential modeling strengths of LSTM, the aim is to achieve precise forecasting of battery charging 
patterns. 
 
Differential Evolution (DE) 
DE is a renowned global optimization method that handles complex problems like non-differentiable, nonlinear, and multi-
modal optimization tasks. Originating from the genetic algorithms' paradigm, DE's distinctiveness arises from using different 
vectors for perturbation, resulting in novel candidate solutions. In DE, an initial population represented by 𝑥𝑥𝑖𝑖 where 𝑖𝑖 spans 1 
to 𝑁𝑁𝑁𝑁, undergoes a series of operations. For mutation, each member 𝑥𝑥𝑖𝑖 undergoes perturbation using three randomly chosen 
members: 𝑥𝑥𝑟𝑟1, 𝑥𝑥𝑟𝑟2, 𝑥𝑥𝑟𝑟3. The mutation generates a new mutant vector, 𝑣𝑣𝑖𝑖, as EQU (2) 
 

 𝑣𝑣𝑖𝑖 = 𝑥𝑥𝑟𝑟1 + 𝐹𝐹 × (𝑥𝑥𝑟𝑟2 − 𝑥𝑥𝑟𝑟3)                      (2) 
where 𝐹𝐹 is a predefined scaling factor. 

      
     Crossover is then employed to mix components from 𝑣𝑣𝑖𝑖 and 𝑥𝑥𝑖𝑖 based on a pivotal parameter, the crossover rate 𝐶𝐶𝐶𝐶. For 
each component, EQU (3) 
 

𝑢𝑢𝑖𝑖𝑖𝑖 = �
𝑣𝑣𝑖𝑖𝑖𝑖  if rand (𝑗𝑗) ≤ 𝐶𝐶𝐶𝐶 or 𝑗𝑗 =  random dimension in [1,𝐷𝐷]
𝑥𝑥𝑖𝑖𝑖𝑖  otherwise    (3) 

 
    where 𝐶𝐶𝐶𝐶 is a probability, typically within [0,1], determining the likelihood of adopting components from 𝑣𝑣𝑖𝑖. The selection 
phase then evaluates 𝑢𝑢𝑖𝑖 against 𝑥𝑥𝑖𝑖 using a chosen objective function. Superior or equal performing 𝑢𝑢𝑖𝑖 replaces 𝑥𝑥𝑖𝑖 for the next 
iteration. Through mutation, crossover, and selection, DE continuously refines its population, striking a balance between 
exploration and exploitation. This makes DE ideal for tuning hyperparameters in advanced forecasting models, such as LSTM, 
especially for intricate tasks like predicting EV battery charging patterns. 
 
Long Short-Term Memory (LSTM) Networks 
LSTM networks are a specialized subset of Recurrent Neural Networks (RNN) designed to address long-term dependencies in 
sequence data. What sets LSTMs apart from standard RNNs are their unique internal structures called "cells," which govern 
the storage and management of information. In the case of the LSTM cell are the state variables, the cell state 𝐶𝐶𝑡𝑡, and the hidden 
state ℎ𝑡𝑡 . However, what enables LSTMs to regulate the flow of information are three critical gates: 
 

Forget Gate (𝒇𝒇𝒕𝒕) : Using the sigmoid function, this gate decides what portion of the previous information in the cell 
state should be thrown away or kept. Mathematically, EQU (4) is defined as:  
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�                              (4) 
 

where 𝑊𝑊𝑓𝑓 is the weight matrix for the forget gate, ℎ𝑡𝑡−1 represents the previous hidden state, 𝑥𝑥𝑡𝑡 is the current input, 
and 𝑏𝑏𝑓𝑓 is the biased term for the forget gate. 

 
Input Gate (𝒊𝒊𝒕𝒕) : This gate defines which new information gets stored in the cell state. It consists of two parts: 
EQU (5) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)     (5) 
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which decides which values to update, and EQU (6) 
 

�̃�𝐶𝑡𝑡 = tanh (𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶)     (6) 
 

which creates a vector of new candidate values. 
 
Output Gate (𝒐𝒐𝒕𝒕) : Determines the next hidden state ℎ𝑡𝑡. The output is based on the cell state, but in a filtered form, 
EQU (7) and EQU (8) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)     (7) 
 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 × tanh (𝐶𝐶𝑡𝑡)     (8) 

 
With these gates in place, the cell state 𝐶𝐶𝑡𝑡 gets updated as EQU (9) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × �̃�𝐶𝑡𝑡     (9) 
 
These mechanics enable the LSTM to learn patterns over long durations, making it particularly adept for time series forecasting 
tasks. 

 
 

Fig 2. Flow Diagram of the Proposed Model 
 
DE Optimized LSTM (DE-LSTM) 
DE-LSTM synergizes the global optimization capabilities of DE with the sequence modeling proficiency of LSTM. Here’s 
how the integrated approach functions: 

Initialization: Begin with an initial population of potential LSTM configurations. Each individual in the population 
represents a unique set of LSTM hyperparameters. 
Fitness Evaluation: For each individual (or configuration) in the population, an LSTM model is trained on the DWT-
transformed EV battery charging data. The performance of the model, measured by a metric Mean Absolute Error (MAE) 
on a validation set, determines the fitness of that individual. 
Evolutionary Optimization: 

Mutation: For each individual, a mutant LSTM configuration is generated by perturbing it using different vectors 
of other randomly selected configurations, adhering to the DE mutation strategy. 
Crossover: Components of the mutant configuration and the original are mixed based on the crossover rate (CR) 
to produce a trial configuration. 
Selection: The trial configuration's LSTM model is trained and evaluated. If its performance surpasses or matches 
the original individual's LSTM, it replaces the original in the next generation. 

Termination: The process iteratively refines the population of LSTM configurations until a stopping criterion (like a set 
number of generations or convergence to a performance threshold) is met. 
The result of DE-LSTM is an LSTM architecture that has been fine-tuned specifically for the forecasting task. By 
dynamically adjusting its hyperparameters based on the evolutionary intelligence of DE, the LSTM can offer more accurate 
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and reliable predictions of EV battery charging patterns. Algorithm 1 presents the steps involved in the process of DE-
optimized LSTM, and the same is presented pictorially in Fig 2. 
 

Algorithm 1: DE-LSTM for EV Battery Charging Prediction 
Input: 

• DWT-transformed EV battery charging time series data: 𝐷𝐷train  (training data), 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 (validation data), 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (testing 
data). 

• DE parameters: Population size 𝑁𝑁𝑝𝑝𝑜𝑜𝑝𝑝, Crossover rate 𝐶𝐶𝐶𝐶, Scaling factor 𝐹𝐹, Maximum generations MaxGen. 
Output: 

• Predicted EV battery charging patterns on 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  using the LSTM model trained with the best configuration obtained 
from DE optimization. 

Procedure: 
Initialization: 
    Randomly generate an initial population of 𝑁𝑁𝑝𝑝𝑜𝑜𝑝𝑝 LSTM configurations. 
    Set gen = 1 (current generation). 
While gen ≤ MaxGen: 
      For each 𝑖𝑖𝑛𝑛𝑖𝑖 in the population: 

Mutation: 
Randomly select three distinct individuals: 𝑖𝑖𝑛𝑛𝑖𝑖1, 𝑖𝑖𝑛𝑛𝑖𝑖2 , 𝑖𝑖𝑛𝑛𝑖𝑖3from the population. 
Generate a mutant configuration mutant by perturbing and using difference vectors from 𝑖𝑖𝑛𝑛𝑖𝑖1, 𝑖𝑖𝑛𝑛𝑖𝑖2 , 𝑖𝑖𝑛𝑛𝑖𝑖3and 
scaling by factor 𝐹𝐹. 
Crossover: 
For each hyperparameter ℎ in 𝑖𝑖𝑛𝑛𝑖𝑖: 
Generate a random number of rand. 
If rand < 𝐶𝐶𝐶𝐶, set ℎ of the trial (trial individual) to ℎ of mutant. 
Else, set ℎ of 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 to ℎ of 𝑖𝑖𝑛𝑛𝑖𝑖. 

Selection: 
    Train LSTM using in-configuration on 𝐷𝐷train  and evaluate on 𝐷𝐷val  to get performance per 𝑓𝑓1. 
    Train LSTM using trial configuration on 𝐷𝐷train  and evaluate on 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣 to get performance per f 2. 
    If per 𝑓𝑓2 is better than or equal to per 𝑓𝑓1 : 
    Replace 𝑖𝑖𝑛𝑛𝑖𝑖 with the trial in the population. 

Increment gen by 1. 
Post-Evolution: 

Select the best individual bestConfig from the final population based on the highest performance on 𝐷𝐷val . 
Train an LSTM using bestConfig on the combined dataset (𝐷𝐷𝑡𝑡𝑟𝑟𝑣𝑣𝑖𝑖𝑛𝑛 + 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣). 

Forecasting: 
Use the trained LSTM model with bestConfig to make predictions on 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  . 
Return the predictions for EV battery charging patterns. 
 

IV.   EXPERIMENTAL ANALYSIS 
Dataset 
This model utilized the Panasonic 18650PF Li-ion Battery Dataset, which records battery performance metrics under varying 
conditions within a controlled thermal chamber. For preprocessing, this study normalized parameters such as voltage, current, 
power, and temperature, ensuring they scaled between 0 and 1. This preserved the dataset's intrinsic variability and optimized 
the LSTM's learning. Subsequently, this work split the dataset into 70% for training, 15% for validation, and 15% for testing, 
ensuring a balanced representation of various battery states and conditions. 
 
Implementation of DWT-DE-LSTM 

Step 1: The battery charging time series data was first decomposed using the Discrete Wavelet Transform (DWT), 
allowing us to capture overarching and nuanced charging patterns. 
Step 2: With the transformed data, this work ventured to train our LSTM network. However, LSTM's myriad 
hyperparameters can dramatically influence its effectiveness. To optimally tune these, this study employed the DE 
strategy. 
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Step 3: The DE-LSTM model underwent rigorous training on the DWT-transformed dataset. The model's 
hyperparameters dynamically adapted based on DE's evolutionary mechanisms, aiming for the pinnacle of 
forecasting accuracy. 

 
Table 1. Hyperparameter for DE-LSTM 

Hyperparameter Value/Range 
LSTM Units 50-150 
Learning Rate 0.001-0.01 
Batch Size 32, 64, 128 
Epochs 100 
DE Population 50 
DE Crossover Rate 0.7-0.9 
DE Scaling Factor 0.5-0.8 

 
For the evaluation of our model's predictive capability on the Panasonic 18650PF Li-ion Battery Dataset, this model chose 
several standard metrics to gauge performance:  

Mean Absolute Error (MAE): It measures the average magnitude of the errors between the predicted and observed 
values. 
Root Mean Squared Error (RMSE): A popular metric for accuracy, it calculates the square root of the mean of the 
squared differences between predicted and actual values. 
Mean Absolute Percentage Error (MAPE): This metric provides error in terms of percentage, offering a relative measure 
of the prediction accuracy. 
R-Squared (R^2). A statistical measure indicating the proportion of the variance in the dependent variable that is 
predictable from the independent variable(s).  

 
The performance of the proposed model was compared against (1) Vanilla LSTM, (2) ARIMA, and (3) Feed-forward NN. 
 

 
Fig 3. DWT-DE-LSTM Predicted vs Actual Charging Values Comparison 

 
      Fig 3 compares the predicted and actual energy levels of the EV battery charging. As evident from the Figure, the forecasted 
charging energy closely aligns with the actual energy level. Upon visual analysis of the box plots derived from multiple runs, 
the DWT-DE-LSTM model consistently outperformed the three baseline models across all evaluation metrics. For Mean 
Absolute Error (MAE), as shown in Fig 4, the DWT-DE-LSTM's MAE scores clustered around a narrow range of 1.18 to 1.23, 
indicating consistent and superior forecasting accuracy.  
      In contrast, ARIMA demonstrated the highest error rates, with its MAE values gravitating around the 1.68 to 1.73 mark. 
The Vanilla LSTM and Feed-forward NN also displayed higher errors than the proposed model, with their MAEs spanning 
1.53 to 1.58 and 1.59 to 1.62, respectively. When examining the RMSE box plots (Fig 5), DWT-DE-LSTM again exhibited 
robust performance with values tightly grouped between 1.44 and 1.48. ARIMA had the highest error spread, ranging from 
1.92 to 1.96. The Vanilla LSTM and Feed-Forward NN trailed behind the proposed model, displaying RMSE values between 
1.78 to 1.82 and 1.74 to 1.78, respectively. 
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Fig 4. Mean Absolute Error (MAE) 

 
Fig 5. Root Mean Squared Error (RMSE) 

 

 
Fig 6. Mean Absolute Percentage Error (MAPE) 
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Fig 7. R-squared (R^2) 

 
As shown in Fig 6 for the MAPE metric, a lower percentage indicates better accuracy. The DWT-DE-LSTM model's 
predictions were closest to the actual values, with MAPEs hovering around 2.7% to 2.9%. In comparison, ARIMA's predictions 
strayed the most, evidenced by its higher MAPE range of 5.0% to 5.2%. The Vanilla LSTM and Feed-forward NN also 
registered higher errors than the DWT-DE-LSTM, with MAPEs of 4.4% to 4.6% and 4.2% to 4.4%, respectively. R^2 values 
(Fig 7) provide insight into the model's goodness-of-fit, with values closer to 1 being desirable. The box plots revealed that the 
DWT-DE-LSTM consistently achieved R^2 values around 0.94 to 0.96, highlighting its superior fit to the data. On the other 
hand, ARIMA had the most petite fit with values spanning 0.84 to 0.86. While Vanilla LSTM and Feed-forward NN offered 
better fits than ARIMA with their R^2 values clustering in the 0.87 to 0.89 and 0.89 to 0.91 regions, the proposed model still 
outshined them. 

V.   CONCLUSION AND FUTURE WORK 
As the Electric Vehicles (EVs) industry continues its upward trajectory, the significance of efficient Battery Management 
Systems (BMS) becomes increasingly apparent. With this sector's rapid growth and evolution, there is a heightened need to 
address the intricacies of battery dynamics. Traditional models have often struggled to encapsulate the complex patterns of 
battery charging. This underscores the pressing requirement for more sophisticated prediction methodologies. Considering this, 
the research presented the DWT-DE-LSTM model, which ingeniously combines the Discrete Wavelet Transform's (DWT’s) 
detailed time-frequency analysis, the prowess of Differential Evolution's (DE’s) optimization techniques, and the LSTM's 
adeptness at sequence prediction. The Panasonic 18650PF Li-ion Battery Dataset served as a testing ground, and when set 
against well-regarded models such as Vanilla LSTM, ARIMA, and Feed-forward NN, the DWT-DE-LSTM model consistently 
displayed superior performance.  
      Looking ahead, there's immense potential to refine and adapt this model. Potential avenues include adapting the model to 
different battery technologies, integrating real-time data feeds for more dynamic predictions, and exploring its compatibility 
with emerging EV technologies.  
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