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Abstract – The Internet of Things (IoT) represents a vast network of interconnected devices, from simple sensors to intricate 
machines, which collect and share data across sectors like healthcare, agriculture, and home automation. This interconnectivity 
has brought convenience and efficiency but also introduced significant security concerns. Many IoT devices, built for specific 
functions, may lack robust security, making them vulnerable to cyberattacks, especially during device-to-device 
communications. Traditional security approaches often fall short in the vast and varied IoT landscape, underscoring the need 
for advanced Anomaly Detection (AD), which identifies unusual data patterns to warn against potential threats. Recently, a 
range of methods, from statistical to Deep Learning (DL), have been employed for AD. However, they face challenges in the 
unique IoT environment due to the massive volume of data, its evolving nature, and the limitations of some IoT devices. 
Addressing these challenges, the proposed research recommends using autoencoders with a dynamic threshold mechanism. 
This adaptive method continuously recalibrates, ensuring relevant and precise AD. Through extensive testing and comparisons, 
the study seeks to demonstrate the efficiency and adaptability of this approach in ensuring secure IoT communications. 
 
Keywords – Internet of Things, Anomaly Detection, Cyber Attacks, Autoencoders, Security, Accuracy. 
 

I.  INTRODUCTION 
The Internet of Things (IoT) has shifted the technology landscape, resulting in a broad interconnectedness. An array of devices, 
from sensors to more advanced machines, collaborates across domains such as healthcare, agriculture, urban planning, and 
home automation [1]. These devices' capacity to gather, share, and analyze data has positioned IoT as an influential part of the 
evolving digital realm. However, the adoption of IoT is not without challenges. The wide range of IoT devices presents potential 
vulnerabilities, with challenges in ensuring consistent security and privacy. Notably, many IoT devices, tailored for specific 
roles and sometimes having limited computational capabilities, might not have the necessary security mechanisms, exposing 
them to potential threats [2]. 
      Communication between devices is a notable issue within the IoT realm. While these communications involve routine data 
exchanges, they are essential to the IoT framework. However, they can be targets for cyber-attacks, including man-in-the-
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middle, denial-of-service, and eavesdropping [3]. Given the expansive nature of the IoT network, traditional security methods, 
which often depend on recognized threat signatures, might fall short. This highlights the importance of advanced Anomaly 
Detection (AD) in IoT. Such detection can pinpoint unusual patterns, acting as an alert system against emerging or unfamiliar 
threats. As cyber threats change and grow, there is an apparent demand for flexible and expandable security measures [4]. 
      In recent years, the domain of AD has witnessed a plethora of approaches, ranging from traditional statistical methods to 
Machine Learning (ML) techniques and further to advanced Deep Learning (DL) methodologies [5]. These methods, although 
effective in specific scenarios, often grapple with challenges introduced by the unique landscape of the IoT. The sheer scale of 
data, its high dimensionality, the evolving nature of IoT data patterns, the scarcity of labelled anomalies for supervised 
techniques, and the high false alarm rates stand as significant obstacles. Moreover, deploying sophisticated models on IoT 
devices, which are typically resource-constrained, adds another layer of complexity [6]. 
      Recognizing these challenges, the proposed work is anchored in the strengths of autoencoders. The work seeks to augment 
them with a dynamic threshold mechanism, striving to offer a solution that is not only scalable and adaptive to the fluid nature 
of IoT data but also astute in reducing false alarms and ensuring ease of deployment. The proposed work recognizes the dynamic 
nature of IoT data and proposes a novel threshold determination method that is both adaptive and effective [7]. Going beyond 
static thresholds, which may not capture the evolving nuances of IoT data, the proposed method continuously recalibrates itself, 
ensuring that the AD remains relevant and precise. Through rigorous experimentation using benchmark datasets and 
comparison with existing models, the work aims to display the proposed approach's efficacy, resilience, and adaptability, 
offering a comprehensive solution for securing IoT communications in this ever-connected world. 
       The paper is organized as follows: Section 2 presents the literature review, Section 3 presents the methods, Section 4 
presents the proposed model, Section 5 presents the experimental analysis, and Section 6 concludes with future work. 
 

II.  LITERATURE REVIEW 
In the realm of IoT security, considerable emphasis has been placed on the utilization of ML and DL methods for AD. [8-10] 
researched device type identification using network traffic analysis. They adopted supervised learning to understand 
characteristics from network packets and then delved into unsupervised learning methods, such as One-class SVM, Isolation 
Forest, and autoencoders, for dimensionality reduction. Their application of autoencoders with the Modbus TCP protocol 
yielded an impressive F1 score of 98.36%. Similarly, [11-13] introduced an unsupervised Attention-based ConvLSTM 
Autoencoder with a Dynamic Thresholding (ACLAE-DT) framework for handling multivariate time series anomalies. By 
processing the data and creating feature images, they utilized an attention-based ConvLSTM autoencoder to discern temporal 
behaviors, achieving AD through dynamic thresholding of reconstruction errors [14-15]. 
     Diverging slightly, [16-18] focused on the data reconstruction error of autoencoders. Their innovative approach perceived 
the reconstruction error as a vector rather than a singular value, enabling a granular AD method. [19-20] centered their research 
around autoencoders, aiming to detect malicious nodes in IoT. Their methodology involved dimensional reduction through 
autoencoders and subsequent clustering in low-dimensional space using the Bayesian Gaussian mixture model, resulting in a 
99% accuracy rate in distinguishing traffic types [21-22].  
       Furthermore, [23-25] developed the Autoencoder Deep Neural Network (AENN) that classifies transmission outcomes, 
predicting intermediate attacks and ensuring a 99.02% detection rate, emphasizing the potential of autoencoders in tackling IoT 
security challenges. 

III. METHODS  
Autoencoder Architecture 
Autoencoders represent a specialized category within neural networks designed to capture compact representations of input 
data. These networks are structured around two central components: the Encoder and the Decoder. The Encoder transforms the 
input data from its original space into a concise, lower-dimensional representation. Mathematically, this transformation can be 
denoted as EQU (1) 

f:ℝdin → ℝdcode           (1) 
       
     where din  is the dimensionality of the input data and dcode  signifies the dimensionality of the latent or compressed space. 
Conversely, the Decoder operates to revert this transformation, aiming to reproduce the input data from its compressed form. 
This reverse transformation is expressed as EQU (2) 

g:ℝdcode → ℝdin       (2) 
       
     The input layer of the autoencoder handles data with a dimensionality of din. As data advances through the architecture, it 
encounters hidden layers. For instance, the first hidden layer could be composed of n1 neurons, applying an activation function 
σ1(x). Subsequent layers continue similarly, each potentially employing different neuron counts and activation functions. 
      Activation functions such as the Rectified Linear Unit (ReLU), Sigmoid, and Tanh are crucial, as they introduce non-linear 
transformations, allowing the network to capture intricate patterns within the data. A significant aspect of the autoencoder's 
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design is the latent space, a condensed input representation. The goal during training is to minimize the discrepancy between 
the original input and its reconstruction by the autoencoder. This discrepancy or reconstruction error is quantified through 
metrics like the Mean Squared Error (MSE): EQU (3) 

L = 1
N
∑  N
i=1 (xi − x̂i)2      (3) 

       
       For binary data, the Binary Cross-Entropy metric is suitable: EQU (4) 
 

L = − 1
N
∑  N
i=1 [xilog (x̂i) + (1 − xi)log (1 − x̂i)]    (4) 

        
     Training involves refining network weights using optimization algorithms like Adam, SGD, or RMSprop. The algorithm 
choice often hinges on data properties and encounters training challenges. Given the propensity of neural networks to overfit, 
regularization strategies, including dropout, weight decay, and early stopping, are integrated to ensure model robustness.             
In Fig 1. 
 

 
Fig 1. Autoencoder Structure 

 
AE for Anomaly Detection 
AD in loT device communication involves identifying sequences or patterns significantly diverge from expected behavior. 
Such anomalies can originate from various sources, including malicious attacks, equipment malfunctions, or unpredictable data 
transmissions. Autoencoders (AE), a specific type of neural network, have emerged as a potent tool due to their inherent ability 
to learn, compress, and reconstruct data patterns. 
      Given an input sequence represented as x = {x1, x2, … , xt}, where each xi denotes a data point (possibly multi-dimensional) 
encapsulating features of loT device communications, the AE processes this input to produce a reconstructed sequence x̂ = 
{x̂1, x̂2, … , x̂t}. The fidelity of this reconstruction is pivotal. If the AE is proficiently trained on 'normal' data, it should ideally 
reproduce such sequences with minimal discrepancies. However, for anomalous sequences, the difference or reconstruction 
error for each point is given by ei = (xi − x̂i)2. The MSE across the entire sequence is then calculated as EQU (5) 
 

MSE = 1
t
∑  t
i=1 ei                                   (5) 

 
     To distinguish between minor deviations and genuine anomalies, we introduce an anomaly threshold, denoted as θ. If the 
computed MSE for a sequence exceeds θ, that sequence is classified as anomalous. The process of determining an optimal θ is 
crucial, ensuring that the system is neither too lenient nor overly strict. At the core of the AE's operation lies the latent 
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representation, a compressed form of the input sequence realized within the AE's encoder. While this representation is adept at 
encapsulating key data features, its direct interpretability remains challenging. This lack of transparency can sometimes 
complicate understanding anomalies based purely on the AE's outputs. 
 

IV. PROPOSED MODEL 
Novel Detection Threshold Determination 
Establishing an optimal threshold for AD is critical in deploying autoencoder-based models. While many traditional methods 
opt for static thresholds or derive from domain-specific insights, the dynamic nature of loT data necessitates a more adaptive 
technique. Central to this proposed method is the acknowledgement that, despite the evolving nature of loT data, the statistical 
properties of the reconstruction errors remain invaluable for threshold determination. Consider the set of all reconstruction 
errors observed during the validation phase, denoted by M, where mi represents the reconstruction error for the ith sample: 
EQU (6) 

M = {m1, m2, … , mn}                       (6) 
        
       From this set, the mean of the errors, represented as μ, is calculated as EQU (7) 

 
μ = 1

n
∑  n
i=1 mi                       (7) 

 
      Simultaneously, gauging the spread and variability of these errors provides insights into their dispersion. This variability is 
encapsulated using the standard deviation: EQU (8) 
 

σ = �1
n
∑  n
i=1  (mi − μ)2                          (8) 

 
         From these statistical properties, a dynamic threshold, θ, is determined by EQU (9) 
 

θ = μ + α ⋅ σ      (9) 
 
       Here, α functions as a sensitivity parameter. A higher α results in a more conservative threshold, leading to fewer ADs, 
while a lower value amplifies the system's sensitivity. Recognizing the time-sensitive nature of loT data, periodic recalibration 
of the threshold becomes imperative. If t signifies the current time and T represents a predetermined recalibration period, the 
threshold undergoes re-evaluation each time tmodT = 0. This involves re-computing both μ and σ based on recent data, 
followed by an update to θ using the dynamic threshold formula. 
      The advantages of this novel threshold determination are multifold. It offers adaptability in response to changing data 
patterns, ensuring continuous relevance, and the flexibility afforded by the sensitivity parameter α permits system-specific fine-
tuning. Furthermore, the periodic recalibrations underpin a system that is consistently updated, reducing the likelihood of both 
false negatives and positives. This dynamic and adaptive threshold determination approach enhances the efficacy of 
autoencoders in AD for loT device communication, promoting a more resilient and reactive system. 
 
AE-Based Anomaly Detection Using the Proposed Detection Threshold 
Before employing the proposed AE learning model, the input data are preprocessed. This entails the handling of sporadic 
transmissions by using domain-informed imputation, normalizing data using Min-Max scaling, transforming the time-series 
data into overlapping sequences, reducing high-frequency noise through smoothing functions, and ensuring dimensionality 
compatibility with the autoencoder's input layer. Once the data is preprocessed, the detection model comes into action. Upon 
receiving the preprocessed input sequence X = {x1, x2, … , xt} that captures various loT data points, the encoder component of 
the AE processes this dataset. This phase is pivotal as it transforms the raw data, yielding a latent representation denoted by 
EQU (10) 

 Z = f(X),      (10) 
      
    where f represents the encoding function mapping the input sequence X into its latent counterpart Z. Following this 
transformation, the decoder comes into play. Its primary role is to reverse-engineer the encoding process, striving to recreate 
the original data from the condensed latent information. This reconstruction phase is captured by EQU (11) 

 X̂ = g(Z),      (11) 
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     where g stands as the decoding function, orchestrating the conversion of the latent sequence Z back into the reconstructed 
sequence X̂. 

 
 

Fig 2. Proposed AD architecture 
 
      The crux of AD rests on assessing the fidelity of the reconstruction in Fig 2. For every original data point xi in X and its 
corresponding reconstructed counterpart x̂i in X̂, a reconstruction error is computed. This error measures the disparity between 
the original and the reconstructed data and is typically expressed as EQU (12) 
 

 ei = (xi − x̂i)2                               (12) 
 
     The culmination of these individual errors aids in identifying anomalies. If the MSE of a sequence surpasses the previously 
derived dynamic threshold θ, the sequence is flagged as anomalous. The strength of this method lies in its adaptability; the 
threshold is continuously coordinated with the recent patterns in IoT data, courtesy of its dynamic nature. By harmonizing the 
AE's reconstruction faculties with this nimble thresholding technique, the system maintains precision and is agile, positioning 
it as a vital instrument in IoT AD. 
 
Algorithm: AE-Based AD with Dynamic Threshold 
Input: 

• Data sequence X = {x1, x2, … , xt} 
• Autoencoder (AE) with encoder function f and decoder function g 
• Dynamic threshold formula θ = μ + α ⋅ σ 

Output: 
• AD result for each data point in X 

Steps: 
Initialization: 

Load the pre-trained AE model. 
Set sensitivity parameter α based on desired system responsiveness. 

Data Encoding: 
For each data point xi in X, obtain the latent representation: zi = f(xi) 

Data Decoding: 
For each latent representation zi, reconstruct the original data point: x̂i = g(zi) 

Compute Reconstruction Error: 
For each pair xi and x̂i, calculate the squared reconstruction error: ei = (xi − x̂i)2 

Calculate MSE: 
Obtain the mean error across the sequence: MSE = 1

t
∑  t
i=1 ei 

Determine Dynamic Threshold: 
Calculate the mean μ and standard deviation σ of the reconstruction errors for recent data points. 
Update the threshold θ using: θ = μ + α ⋅ σ 

Anomaly Detection 
For Each ei in the sequence: 
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If ei > θ, mark xi as an anomaly. 
Else, mark xi as normal. 

Return Results 
Provide a list indicating AD results for each data point in X. 

 
V. EXPERIMENTAL ANALYSIS 

Dataset Used 
The experiments primarily utilized the N-BaIoT dataset [7], a widely recognized dataset in the field of IoT security research. 
This dataset from Ben-Gurion University encompasses network traffic from various smart devices, thus representing typical 
household IoT communication patterns. It contains traces of benign and malicious activities, making it suitable for AD tasks. 
The dataset consists of features like packet size, transmission rate, source and destination IP addresses, and protocol type, 
among others. 
 
System Configuration 
The experiments were conducted on a workstation with an Intel Core i9-10900K CPU, 64 GB RAM, and an NVIDIA RTX 
3090 GPU. The software environment was set up with Python 3.8, TensorFlow 2.5, and Scikit-learn 0.24. 
 
Metrics Employed 
To evaluate the efficacy of the proposed AD model, the following metrics were employed: 

• Accuracy: Proportion of correctly predicted instances over total instances. 
• Precision: Proportion of correctly predicted anomalies over total predicted anomalies. 
• Recall (Sensitivity): Proportion of correctly predicted anomalies over actual anomalies in the dataset. 
• F1-Score: Harmonic meaning of Precision and Recall, giving a balanced measure. 

 
Baseline Models for Comparison 

The proposed AE-based model was compared against the following baseline models to ascertain its relative performance: 
• Isolation Forest: An ensemble-based method effective for detecting outliers. 
• One-Class SVM: A kernel-based method tailored for novelty detection. 
• Local Outlier Factor (LOF): Measures the local deviation of the density of a given sample concerning its neighbors. 
• DL-based Classifier: A simple feed-forward neural network trained explicitly for the AD task. 
By comparing the proposed model's performance against these baseline models, a comprehensive understanding of its 

effectiveness and potential advantages in IoT-AD was ascertained. 
 
Training The Proposed Model 
The proposed AE-based AD model was trained using the N-BaIoT dataset. The dataset was split such that 80%, equivalent to 
1.6 million instances, was used for training, containing 'normal' IoT communication patterns to ensure that the autoencoder 
learns a proper representation. The remaining 20% (400,000 instances) was set aside for testing and included normal and 
anomalous patterns to evaluate the model's ability to detect anomalies. 
       For training, a set of hyperparameters was chosen to optimize performance. A learning rate of 0.001 was used to ensure a 
balanced convergence rate. The model was trained with a batch size of 256 for computational efficiency and to capture the 
nuances in the data. The training was performed over 50 epochs, which was determined to be where the validation loss began 
to plateau. The Adam optimizer was employed for its adaptability, and the primary loss function used was the MSE to measure 
the difference between the original and reconstructed data. To prevent overfitting and enhance the model's generalization 
capability, dropout regularization was applied with a rate of 0.5. See the Table 1.  
 

Table 1. Comparative Performance Metrics across IoT Devices for Various Models 
Metrics / Device AE-AD IF SVM LOF FFN 

Device 1 
Accuracy 92.4% 91.7% 90.2% 89.8% 90.9% 
Precision 91.1% 90.5% 89.3% 88.7% 89.6% 

Recall 89.9% 89.2% 88.4% 87.5% 88.3% 
F1-score 90.5% 89.8% 88.8% 88.1% 89.0% 

Device 4 
Accuracy 93.0% 91.9% 90.5% 90.1% 91.2% 
Precision 92.2% 91.0% 89.6% 89.0% 90.1% 
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Recall 90.8% 89.6% 88.7% 88.2% 89.4% 
F1-Score 91.5% 90.3% 89.1% 88.6% 89.8% 

Device 7 
Accuracy 92.7% 91.5% 90.8% 89.5% 91.0% 
Precision 91.8% 90.7% 89.2% 88.9% 90.3% 

Recall 90.5% 89.3% 88.5% 87.8% 89.2% 
F1-score 91.1% 90.0% 88.8% 88.3% 89.7% 
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(d) 

Fig 3. (a) Accuracy, (b) Precision, (c) Recall and (d) F1-score 
 

    The analysis for three devices among nine from the N-BaIoT dataset highlights how each AD model performs across different 
metrics Fig 3. For Device 1, the proposed AE-AD model conspicuously distinguishes itself, achieving an accuracy of 92.4%. 
This superior performance can be attributed to the model's adeptness in effectively leveraging compact representations of the 
data and its dynamic thresholding method, which constantly adapts to the evolving nature of IoT data. The Isolation Forest 
follows closely with an accuracy of 91.7%, suggesting that ensemble-based methods also hold merit in this domain. However, 
SVM, FFN, and LOF yield lower accuracies of 90.2%, 90.9%, and 89.8%, respectively. With respect to precision, the AE-AD 
model continues to shine, notching a precision of 91.1% for Device 1.  
     This indicates the model's consistent ability to identify anomalies while minimizing false alarms correctly—a crucial aspect 
in real-world IoT applications where erroneous anomaly flags can be costly. While FFN and SVM also highlight commendable 
precision values around the 89-90% range, the intricate design of the AE-AD model places it a step ahead. The recall and F1-
score metrics resonate with these findings. The performance hierarchy remains broadly similar for Device 4. Once again, AE-
AD takes the lead, securing an accuracy of 93.0%. Its superiority is also evident in other performance measures, with precision, 
recall, and F1-score hovering above the 90% mark. FFN appears to be the second-best performer for this device, consistently 
outpacing SVM, LOF, and IF, albeit by a small margin.  
     For Device 7, the patterns persist. The AE-AD model reigns supreme with an accuracy of 92.7%. Its precision is 91.8%, 
achieving recall and F1-Score values of 90.5% and 91.1%, respectively. As with the other devices, the FFN comes second, 
showing its ability to perform consistently across various devices. 
      All models manifest robust results, but the AE-AD model remains at the forefront, underlining its balanced and efficient 
approach in AD. Its novel encoding-decoding mechanism, coupled with adaptive thresholding, makes it especially apt for 
pinpointing genuine anomalies in IoT device communications, yielding accurate and consistent results across varied data 
scenarios. 
 
Training & Testing Loss Across Models 
The provided Fig 4 displays the average MSE over 50 epochs for various AD models. At the forefront is the AE-AD, the 
proposed model, recording a training loss of 0.03 and a testing loss of 0.05. These values highlight its efficacy in capturing 
intricate data patterns during training and generalizing effectively on unseen data. In stark contrast, models such as the Isolation 
Forest and LOF seem to lag, with the former registering MSE values of 0.09 and 0.11 for training and testing, respectively, and 
the latter posting similar figures of 0.10 and 0.12. Such elevated errors indicate potential challenges these models might face 
in grasping the nuances of the data across the epochs. The SVM model demonstrates a marginal improvement, its average MSE 
values being 0.08 and 0.10 for training and testing. 
       Nevertheless, it does not reach the proficiency of the AE-AD model. Meanwhile, the Feed Forward Neural Network (FFN) 
displays a middling performance, with its training and testing MSE at 0.06 and 0.08, respectively. Though it surpasses the 
Isolation Forest, SVM, and LOF in efficiency, it remains overshadowed by the exemplary performance of the AE-AD model. 
Conclusively, when considering the average MSE across 50 epochs, the AE-AD proposed model emerges as the most potent, 
signaling its robustness and reliability for AD compared to its counterparts. 
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Fig 4. MSE for Training and Testing 

 
VI.    CONCLUSION AND FUTURE WORK 

The IoT has rapidly grown, integrating various sectors like healthcare, agriculture, and home automation. With this integration, 
security has emerged as a significant concern due to the vastness and diversity of IoT devices. Many of these devices, designed 
for specific roles, may lack robust security features, rendering them vulnerable to cyberattacks. There is a pressing need for 
effective Anomaly Detection (AD), a method that identifies unusual data patterns, warning against potential threats. Research 
efforts have been dedicated to enhancing AD techniques suitable for the IoT landscape. ML and DL have been prominently 
featured in recent studies. Autoencoders have gained attention for their ability to process vast amounts of data and adapt to its 
evolving nature. Their application, when combined with dynamic thresholds, has shown promising results in identifying and 
addressing anomalies in real-time. In conclusion, as the IoT ecosystem grows, its security must evolve. Recent advances with 
autoencoders provide a durable foundation.  
     Future work, it would be beneficial to delve deeper into integrating autoencoders with other emerging technologies and 
algorithms. For instance, exploring the constructive collaboration between blockchain technology and autoencoders might offer 
enhanced data integrity and security in IoT networks. 
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