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Abstract – Due to human activities like global warming, pollution, ozone depletion, deforestation, etc., the frequency and 

severity of natural disasters have increased in recent years. Unlike many other types of natural disasters, floods may be 

anticipated and warned about in advance. This work presents a flood monitoring and alarm system enabled by a smart 

device. A microcontroller (Arduino) is included, and its support for detection and indication makes it useful for keeping 

tabs on and managing the gadget. The device uses its own sensors to take readings of its immediate surroundings, then 

uploads that data to the cloud and notifies a central administrator of the impending flood. When admin discovers a crisis 

situation based on the data it has collected, it quickly sends out alerts to those in the local vicinity of any places that are 

likely to be flooded. Using an Android app, it alerts the user's screen. The project's end goal is to develop an application 

that swiftly disseminates flood warning information to rural agricultural communities. Scaled principal component analysis 

(SPCA) is used to filter out extraneous data, and an ensemble machine learning technique is used to make flood predictions. 

The tests are performed on a dataset that is being collected in real-time and analysed in terms of a number of different 

parameters. In this research, we propose a strategy for long-term agricultural output through the mitigation of flood risk. 

 

Keywords – Flood, Monitoring System, Ensemble Machine Learning, Scaled Principal Component Analysis, 

Microcontroller.  

 

I. INTRODUCTION 

Natural disasters account for around 60,000 annual deaths, or 0.1% of all deaths worldwide [1]. Some examples of such 

natural calamities are floods, earthquakes, hurricanes, and landslides. As much as 40 percent of all natural disasters 

worldwide occur as a result of flooding [2]. The huge increase in flood hazards [3] is attributable to climate change, 

hurricanes, high storms [4]. It is estimated that floods have caused dollars in damage and the deaths of thousands of people 

worldwide [5]. In this era of concern for sustainability and smart cities [6], it is imperative that flood damage be reduced 

to a minimum [7], as it results in enormous economic losses in addition to the tragic loss of life [8]. Since the turn of the 
2000, there has been a significant increase in flood events [9], with losses due to flooding increasing from $6 billion to $10 

billion as a direct result of extreme rainfall events [10]. As a result, governments have spent billions on flood prevention 

projects [11]. The economic growth of the impacted countries is further hampered by the costs of rescue operations, 

reconstruction, and relief services. An estimated USD 19 billion was lost worldwide due to floods in various geographical 

locations in 2012 [12]. Many people perish because of delayed response times for aid and recovery services following a 

flood because of a lack of precise and rapid technologies that might routinely sense the onset of flooding in an area. 
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     Unmanned Aerial Vehicles (UAVs), on the other hand, are typically developed for image-based systems, making them 

unfit for detecting lava floods. For a lava flood early warning system, machine learning and artificial intelligence are better 

suited to catastrophic situations [13] or early prediction [14-15]. Several studies, like [16], have integrated Internet of 

Things (IoT) with machine learning and AI techniques for use in emergency management. Most of these systems are used 

for detection [17-19]. Fuzzy-based algorithms are the best applicable to monitoring and early warning systems among all 

methods for ML and AI approaches. Decision-making systems that are based on the theory of fuzzy sets can have the same 

level of conceptual knowledge as their designers, and there are also such systems that can process many inputs and provide 

several outputs. [20] Fuzzy logic can be used to create a flood detection system, for instance. Further, a decision tree 

method combined with IoT was developed for flood detection and alerting, yielding good accuracy and performance [21].  

     It is common practise for flood monitoring systems to be linked to rainfall intensity schemes because the heavy 
downpour most common catastrophes caused by flooding. As [22] examined a neural network approach for application in 

a cheap flood surveillance system in which a water level sensor when a Raspberry PI was connected to evaluate rainfall 

intensity. For both scientific inquiry and agricultural output, high-dimensional data is everywhere. The vast amounts of 

information it provides are accompanied by significant difficulties for data mining and pattern detection due to the data's 

sparseness and redundancy. In a pattern recognition system, dimensionality reduction is a critical stage because it can 

simplify learning methods, lessen the effects of noise, and boost classification precision. SPCA is utilised here as a 

dimensionality reduction method, which helps to enhance the ensemble machine learning approach taken in this work. 

Predicting early flood in agricultural lands using an ensemble model.  

     The rest of the paper's information is organised into distinct chapters. Section 2 analyses relevant literature. In Sections 

3 and 4, we provide context for the integration of ML with the IoT, and we briefly describe the suggested paradigm. In 

Section 5, we compare the proposed model to the state-of-the-art validation approaches. Section 6 concludes the paper and 
looks ahead to potential extensions of the research. 

 

II.  RELATED WORKS 

Susceptibility in Iran and India are generated using an unique hybrid model presented by [23], which combines the 

autoencoder models. In two scenarios, nine and twelve variables were examined as predictors for flood susceptibility 

mapping, respectively. The criterion was utilised to evaluate the predictive efficacy of the suggested hybrid model in 

comparison to the conventional MLP model. In the training phase, MLP and autoencoder-MLP models achieved AUROC 

curves of 75% and 90% for the Iran and India examples, and 74% and 93% for the testing phase. Based on the findings, a 

hybrid autoencoder-MLP model is preferable to the MLP perfect for flood susceptibility mapping. 

     The effects of flood and drought disasters (FDD) on farming were examined by [24] in terms of their spatial and 

temporal distribution. This research proposes a comprehensive index of FDD based on the impacted and destroyed crop 

rate and combines multi-methods to analyse the disaster FDD on agriculture in China. What we learned from the data is as 
follows: (1) Droughts have a greater temporal and geographical impact on crops than floods. The effects of FDD on farms 

have been declining since 1978. (2) Droughts were most severe in the Northeast, Northwest, and North China, while floods 

had the greatest impact on agriculture in the Northeast. The Southwest, Central-south, and East regions of China all felt 

the effects of these natural disasters. (3) The transfer pathways of the gravity centres of the FDD's impact on agriculture 

were diametrically opposed; the gravity centres of flood disasters moved to the southwest and the northeast, whereas those 

of droughts moved to the northeast and the southwest. (4) Largest sections of the Northwest, Southwest, Central-south, and 

North of China experienced droughts, whereas the Southern regions of China saw the most benefit from human activity in 

reducing agricultural losses due to floods. Benefits for agriculture management and effective FDD governance are 

anticipated from the study's findings. 

    Utilising UAVs, [25] creates an automated flooded areas in aerial photographs. In the study, the Haar cascade classifier 

was used to analyse UAV aerial photos for recognisable structures like roads and buildings, as well as to locate flooded 
areas. After the landmarks have been retrieved, they are included in a deep learning model's training dataset. The 

experimental results demonstrate a 91% and 94% success rate in identifying buildings and highways in photographs, 

respectively. Dividing flooded and non-flooded properties areas from the input case study photographs was 91% accurate 

overall. Promising findings were obtained using pre- and post-flood classes of test photos, indicating that the technique is 

effective. Using this technique, rescuers can swiftly pinpoint flooded areas and reach stranded citizens. 

     In [26] introduces AgriFloodNet, an improved convolutional neural network model for mapping agricultural fields 

impacted by floods in remote sensing photos. Sentinel-1's bi-temporal Synthetic Aperture Radar (SAR) photos are used to 

efficiently learn permanent and flood water features, while Sentinel-2's cloud-free multispectral images (MS) are used to 

effectively learn agricultural land features. When it comes to depicting the effects of flooding on agricultural lands, a 

change map is generated by fusing the processing results of multisensory pictures at the decision level. With an accuracy 

of 98.75%, the proposed AgriFloodNet excels at FLOOD dataset. Single-sensor solutions, on the other hand, achieve an 

accuracy of 96.88% for SAR images and 91.11% for MS images. The typical has also been tested for a new flood 
occurrence in Patna, India. A total of 61% of the test site's agricultural fields were damaged or destroyed when a flood 

occurred on what was thought to be 75% of the site's total area. 

     After a storm hits [27] creates a framework to locate the locations most affected by flooding, (2) maps the regions most 

affected by the high rainfall and thunderstorms, and (3) evaluates the storm's primary influence on the land cover through 
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the flood. The wave of the severe rainfall and thunderstorm event indicated that about 2255.67 of the study area was 

inundated. Seventy percent of built up areas and roads were flooded during this disaster, with another 50 percent of shrubs 

getting wet. There was less damage to sand dunes than to other land covers, but overall, about 30% of agricultural land, 

tree canopy land, and barren ground was flooded. These findings not only show that land cover is vulnerable to flooding, 

but also highlight the benefits of using Google information on its platform to monitor and track natural hazards through 

time. 

     With climate data spanning 30 years, from 1991 to 2020 [28] seeks to provide a deep forecasting model based on 

optimised (Gated Recurrent Unit) GRU neural network to predict rainfall in Pakistan. For accurate forecasting, the climatic 

variables were first retrieved, and then refined by removing outliers and extreme values. After that, we used data 

normalisation techniques to convert all the numbers to a common scale, without sacrificing any of the variance or precision. 
The suggested model outperformed state-of-the-art rainfall forecasting models in terms of prediction accuracy by keeping 

NMAE and NRMSE to very low levels. A correlation and regression analysis was performed on the climatic variables that 

were employed in the forecasts. The data also showed that the air quality factors had a positive link with rainfall throughout 

the year. Compared to the first and second quarters, when there was a weaker or nonexistent relationship between air 

quality factors and rainfall, the third quarter and the end of the year revealed a strong correlation. Additionally, the data 

demonstrated a robust relationship between climatic variables and monthly rainfall occurrence throughout the year. 

     The [29] uses a revised universal soil loss equation (RUSLE) model to try to forecast the likelihood of soil erosion. To 

run the LSTM model, we used daily rainfall data collected from five agro-meteorological sites in the Central Highlands of 

Sri Lanka between 1990 and 2021. Precipitation values for the next 36 months at each station were input into the LSTM 

model, which was trained with a time series of monthly rainfall data. The 2024 rainfall erosivity map layer was generated 

using geo-informatics technologies. Soil erosion rates in the Highlands are expected to average 11.92 t/ha/yr, according to 
the RUSLE model. About 30 percent of the land area is predicted to fall into the moderate to extremely high soil erosion 

susceptibility classes, according to the soil erosion susceptibility map. Previous soil erosion map layers from the years 

2000, 2010, and 2019 were used to verify the accuracy of the final product. A satisfactory level of prediction ability is 

demonstrated by the AUC-ROC value of 0.93 for the soil erosion susceptibility map. 

 

III. ML AND INTERNET OF THINGS IN FLOOD DETECTION 

The Internet of Things (IoT) has numerous ramifications for research and important meetings in the present day. Web and 

things are the first sources for the concept of IoT. Now, the fixed meaning of these two phrases describes the structure of 

dependent variations that may be mapped onto established correspondence traditions. The Internet of Things (IoT) was 

first proposed in the 1980s as a means of enhancing cutting-edge remote developments like RFID, sensors, actuators, and 

cellphones. Disk-to-disk communication has become restricted to a narrowly tailored system where a subset of the nodes 

act as a handoff or portal administrator during the course of regular framework failure. When the affected area gains access 
to live innovations like Internet, satellite, or a functional This hand-off administrator will use a conventional cell coordinate 

connect the area to the rest of the world. Using IoT, tasks are distributed over various devices in order to verify device-to-

device communication and facilitate rapid, objective data collection and analysis inside their own frameworks. In this case, 

IoT is a diverse framework for categorising the associated gadgets in their own unique ways. The inexpensive to moderate 

cost of the numerous sensors allows for a high data accuracy rate and moderate hardware dependability. Specifically, 

Internet of Things technologies are in high demand in emergency management initiatives. 

      The initial phase in the procedure is to gather real-time data from sensors such ultrasonic water flow/level sensors, 

temperature/humidity sensors, and rain gauges. A microcontroller receives all the information. With the help of numerous 

software components running in the cloud, the fog, or at the edge of the network, IoT can analyse data in real time. Future 

flood hazards can be predicted using a variety of ML and AI methods for data mining by comparing raw data to known 

parameters. To coordinate evacuation and relief activities, this data can be broadcast via social media, other broadcast 
modes, and warning messages sent via the short messaging service (SMS). The Internet of Things (IoT) is used to keep 

tabs on the environment and alert authorities when danger is imminent. 

 

IV. PROPOSED MODEL 

As seen in Fig 1, the proposed model's process flow is shown. A variety of sensors, including water level sensors, 

temperature sensors, rain gauge sensors, and vibration sensors, are used to keep an eye on the farms. These readings are 

transmitted to an Arduino UNO, which stores them in the cloud. When SPCA combined with ensemble machine learning 

successfully identifies flooding on the field, the resulting data are delivered to android applications like WhatsApp or SMS 

to warn the farmers. 

 

Client Upstream From Agricultural Land 

The first and important stage of the proposed system is client upstream from agricultural land. This stage consist of several 
sensors, which has helps to identify the weather conditions. The sensors such as, rain gauge sensor measurements, 

temperature & humidity measurements, water level measurement, vibration measurements and image sensor. With the help 

of Arduino UNO sensors measured data’s are collected and transfer to cloud/client downstream. The working of the all 

sensors are described in the below subsections. 
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Fig 1. Proposed System model. 

Arduino UNO 

The tmega328p microcontroller is an integral part of the Arduino development package, which is used in this project. It 

has both digital and analogue I/O pins. Values will be transmitted to the server. Some users are signed up for the mobile 

apps in order to see the secure locations in their immediate vicinity via Google Maps as part of the experiment. Any 

participant in the experiment who has already registered for the same application can see the results as soon as they are 

available. 

 

Rain Gauge Sensor Measurements 
The sensor for the rain gauge, as well as the integrated microcontroller for the ESP, and the Internet of Things make up the 

backbone regarding the gadget for measuring the intensity of the rainfall's architecture. A mechanical and electronic system 

work together to form the sensor located on the rain gauge. In terms of the mechanical system, the following are the details: 

Dimensions of 42 x 40 cm, sensitivity of 1 mm/tip, 100 cm2 funnel cross-sectional area, 10 ml water capacity per tip. There 

are no constraints on the design of the tipping bucket system, which is constructed without rainwater reservoirs. Using a 

reed switch, we can determine how much water is entering the electronic system by tallying the number of times the bucket 

is tipped over. Establishing a connection between the ESP microcontroller and the rain gauge sensor allows for the 

conversion of counted tips over the course of an hour into a mm/h measurement of rainfall intensity. 

     The graphic shows that the ANN's output is split across five different roots labelled O1, O2, O3, O4, and O5. However, 

it takes in just one piece of information at a time: the sensor's output. The output variable, rainfall intensity, is categorised 

using information found in [30]. With no rain, O1 is the output every hour or every day. O2 precipitation falls at a rate of 
0.1 to 4.9 millimetres per hour, or 0.1 to 199 millimetres per day. When the O3 indicator is present, precipitation rates of 

5–9.9 mm/hour are typical. O4 is characterised by intense rain, with a precipitation rate of 10-20 mm/hour. Rainfall rates 

of 20 mm/h or more (or 100 mm/day) qualify as O5 rainfall. 

 

Temperature & Humidity Measurements 

The DHT11 sensor model is employed in this work. It is a cheap digital sensor that measures the relative humidity and 

temperature of the air or water surrounding it and outputs this information as a digital signal to a microcontroller's data pin. 

 

Water Level Measurement 

In order to determine how deep the water is, a float sensor is used. The normal operating position serves as a complete 

opening and closing circuit when it is not in use. When the water level is now lower than the predetermined minimum, 

power flows through the warning circuit, and then on to the rotor and hall effect sensor after that housed in the current 
plastic body, re-routing the supply water to the same rotor as before. Changes in velocity are visible, coupled with variations 

in flow rates. 

 

Vibration Measurements 

Vibration detection can begin with a number of different inputs, including material volume, satellite imagery, and infrared 

mapping. According to this research, the frequency of vibration is used as the starting point parameter or primary input in 

order to identify cool lava floods. The movement and flow of material or silt from the peak of the mountain causes 

oscillations. The identification of this vibration allows for the detection of cool lava floods. As can be seen in Fig 2, This 

is what the cold lava substance vibration sensor looks like an instrumentation design. 
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Fig 2. Cold Material Vibration Instrumentation. 

Image Sensor 

An ultra-compact UAV known as River-map was chosen for monitoring land regions and detecting flooding. aerial pictures 

with a high resolution and the RGB color space of the case study region were taken with a Go-Pro® digital camera. As can 

be seen in Fig 3(a-b), on September 2, 2021, real-time surveillance of the area under investigation was carried out using 

this setup, drawing attention to the devastation as a result of the agriculture flood in this area. The pictures demonstrate 

that the agricultural field has been flooded. 

  

    
(a) With flood (b) With flood 

  

Fig 3. Sample Collected Images 

 

Client Downstream From where ever the world 
This is the second most important part of the proposed work.  Client Downstream section has detected the flood, that 

information is transferred to the farmers via SMS, and what’s app. In the received signal, consist of five different data’s 

such as rain gauge sensor data, temperature & humidity data, water level data, vibration data and image data.  In that, rain 

gauge, temperature, humidity, water level and vibration data are directly considered as features and it’s fused. Another 

Sensor data is an image data, which is feature extracted and dimensionality-reduced data is fused with the other sensor data 

and it’s given to the ML technique.  

 

Feature Extraction 

In order to maintain both the low and high frequency info, images are typically fragmented into a sum of sub-images at 

varying resolution levels. Texture data can be retrieved from photos with the use of the DWT property. f(u) is the inner 

product of the square-integral function f(u) and the wavelet transform w, and (u) is the original-valued function. The 
wavelet function is given in the Eq. (2). 

𝑤[𝑓(𝑠, 𝜏)] = (𝑓, 𝜓𝑠,𝑡
𝑘 ) = ∫ 𝑓(𝑢)𝜓𝑠,𝑡

𝑘∞

∞
(𝑢)𝑑𝑢                                     (1) 

𝑊ℎ𝑒𝑟𝑒, 𝜓𝑠,𝑡
𝑘 (𝑢) = (

1

√𝑠𝜓𝑠,𝑡
𝑘

/𝑠)  𝑑𝑒𝑛𝑜𝑡𝑒𝑠                                              (2) 

scale (s), translation (t), and orientation (k), all in the context of the wave family. Vertical, horizontal, and diagonal 

orientation are indicated by the h, v, and d parameters. During the parameters s=2j and =2j,n,j,nz, a dyadic wavelet 

decomposition is obtained. A scalable example of DWT, the dyadic wavelet decomposition follows 2. We use perfect 

reconstruction filter banks to implement dyadic wavelets for the wavelet decomposition that follows. Through the use of 

Eq. (3)'s wavelet function (u) and the scaling function (u), we may (4). The wavelet atoms can be described using scaling 

and the three mother atoms h, v, and d. These primordial nuclei are found by multiplying the 1-dimensional tensors (u) and 

(u), which are represented by the symbols in Eq. (5), and the 2-dimensional tensors (u) and (u), respectively (6) 

𝜓𝑗,𝑛
𝑘 (𝑢) =

1

√2𝑗
𝜓𝑘(

𝑢−2𝑗 .𝑛

2𝑗 )                                                                      (3) 

𝜑𝑗,𝑛
𝑘 (𝑢) =

1

√2𝑗
𝜓𝑘(

𝑢−2𝑗 .𝑛

2𝑗 )                                                                      (4) 

𝜑(𝑢) = 𝜑(𝑢1)𝜑(𝑢2), 𝜓𝑘(𝑢)                                                                   (5) 

𝜑𝑣(𝑢) = 𝜑(𝑢1)𝜓(𝑢2), 𝜓𝑑(𝑢)                                                                 (6) 
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Combining down samplers with digital filter banks allows for the realisation of DWT on a two-dimensional scale. Both a 

low-pass and a high-pass digital filter make up the filter bank. The wavelet configuration structure is used to categorise the 

bank's number into groups that correspond to the functions that are sought. Next, a 1-dimensional wavelet transform is 

performed on the rows and columns of the underwater image independently to get a 2-dimensional wavelet coefficient. 

Frequency domain decomposition of the original A (2(j+1)) fat resolution photos yields four subband images. Resolution 

in the vertical, horizontal, and diagonal directions between the 4-subband images originates from the original 3-subband 

images, such as D (2i)h f, D (2i)h f, and D (2i)h f. Since A (2i) f is a low-resolution approximation image, the whole 

underwater image is given by the symbol A (2(j+1)) f in the Eq (7). 

 

𝐴2𝑗+1𝑓 = 𝐷
2𝑖
ℎ 𝑓, +𝐷

2𝑖
𝑣 𝑓 + 𝐷

2𝑖
𝑑 𝑓 + 𝐴2𝑖𝑓                                                        (7) 

 

The 2-dimensional orthogonal wavelet represents the separated image components. Wavelet decomposition of an image 

yields four orthogonal sub-bands, designated by the notations D (2i)h f,+D (2i)v f+D (2i)d fandA (2i) f for Low-Low (LL), 

Low-High (LH), High-Low (HL), and High-High (HH), respectively. Extraction of LL and LH wavelet highlights from 

each sectioned image serves as the work's foundational phase of component extraction. Gray Level Co-event Matrix 
(GLCM) is utilised and the component values are extracted with the aid of wavelet highlighting. Highlights tally up like 

us, Dissimilarity, Autocorrelation, Cluster Prominence, Cluster Shade, and Contrast. Entropy of energy, There must be 

homogeneity, homogeneity, homogeneity. Highest possible probability, the number of cubes, Variance, Statistical mean, 

average, change, entropy, dispersion, transformatio n entropy, Statistics such as the Evidence Ratio, the Information Ratio, 

the Inverse Difference, the Inverse Difference Standardized, and the Converse Alteration Moment Normalized. 

 

SPCA Method for Dimensionality Reduction 

Let's pretend there are N predictors, and their product is given by X t= (X (1,t),,X (N,t))', where T is the total number of 

observations and I is any of the integers from 1 to N, inclusive. The goal is to use these predictors to make predictions 

about a target variable y (t+h) at a forecast horizon of h time units into the future. Each X (i,t) is a useful but limited 

indicator of the outcome of interest. In light of this, it is improbable that a small subset of them will adequately depict the 

target's dynamics. However, the curse of dimensionality causes problems with both in-sample and out-of-sample overfitting 
as well as performance differences were found when every single predictive factor are used in a traditional multivariate 

regression. It is usual practise to impose a factor structure on the predictors and then extract the latent components from 

that structure, which results in a reduction in the dimensionality of the data. 

     In this study, we focus on the N predictors X t and the outcome y (t+h) by considering a latent component model of 

their joint dynamics. 

 

𝑋𝑖,𝑡 = 𝜇𝑖 + 𝜆′𝑖𝑓𝑡 + 𝑒𝑖,𝑡 = 𝜇𝑖 + 𝜙𝑖
′𝑔𝑡 + 𝜓𝑖

′ℎ𝑡 + 𝑒𝑖,𝑡                                          (8) 

𝑦𝑡+ℎ = 𝛼 + 𝛽′𝑔𝑡 + 𝜖𝑡+ℎ                                                                (9) 

 

     where g t are r 1-dimensional the aim y (t+h), and ht are (r r 1)-dimensional irrelevant factors, and f t=(g t',h t')' are r-

dimensional unobserved factors. '_i=( i I represents the loadings on f t for each predictor I = 1,,N. Any variable in f t can 

predict y (t+h) in their setup. In contrast, our framework makes greater sense when applied to real-world data since it 
considers just a subset of ft (factors g t) to be important to the objective. Since the majority of theoretical conclusions rely 

on all elements, this work clearly analyses the scenario when the irrelevant factors h t are removed from Eq (8) for 

predicting. 

     The PCA is a common approach for estimating the latent factors ft due to the factor structure. To be more precise, the 

PCA computes an estimate for f t=(g" t,h" t)'as T times the eigenvectors associated with the r greatest eigenvalues of M xx, 

where M xx=1/N _(i=1). ^ The sample covariance matrix N(X I X I has TT dimensions and is defined as ((X i=(X (i,1),) 

X (i,2),...,X _(i,T))) and (X (i,t)=X (i,t)-1/T _(s=1)TX (i,s)). Let F= (G,H), where G=(g 1,g 2,...,g T)' and H=(h 1,h 2,...,h 

T)'. The factors Fb can be thought of as a shorthand for much of the variety in X t. It is possible to do forecasting based on 

either the full set of factors (g t and h t) if one chooses a low bias, or on only some of the factors (g t) if one prefers a 

parsimonious model and thinks the estimated partial factors are adequate. For either scenario, rN allows for dimension 

reduction. 
     However, the PCA has the drawback of not considering the goal data when the model is described by Eq. (8) and (9). 

In particular, there is no guarantee that the first r-1 main components can provide the most accurate prediction of the target, 

and the PCA fails to distinguish between target-relevant and irrelevant latent factors when the factors are high. If the factors 

aren't strong enough, the PCA might not be able to separate them out from the other noise, resulting in inaccurate 

predictions even when considering the full set of variables. The SPCA is intended to improve upon the PCA by including 

the target information in the factor extracting process, hence mitigating these shortcomings. Using the SPCA, we make a 

two-stage prediction of the target: Assemble a set of scaled predictors ( _1 X (1,t),..., _N X (N,t)), where the scaled 

coefficient it is the predicted slope obtained from regression analysis of the target on the i-th (standardised) predictor: Use 

principal component analysis on ( _1 X (1,t),..., _N X (N,t))to derive r factors, and then put them to use to make predictions 
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about the goal. To be more precise, one must determine the TT matrixM XX°=1/N _(i=1)N I (X i) ( I (X i) )', where (X i) 

is predictor i's devalued vector.  

     To get the sPCA factors, F sPCA, we multiply the r greatest eigenvalues of the matrix M XX° by T, where T is the 

number of factors in the matrix. Consider the first r 1 columns of F sPCA to be G sPCA, and the transposition of the t-th 

row of G sPCA to be g tsPCA. Regressing y (t+h) on a constant term and the estimated factors fbtsPCA yields a full-factor 

based forecast, while regressing y (t+h) on a constant term and the estimated factors gtsPCA yields a partial-factor based 

forecast. If so, here is what we can expect for y (t+h) according to the SPCA: 

 

�̂�𝑡+ℎ
𝑠𝑃𝐶𝐴 = �̂�𝑠𝑃𝐶𝐴 + (�̂�𝑠𝑃𝐶𝐴)′𝑓𝑡

𝑠𝑃𝐶𝐴                                               (10) 

 

�̂�𝑠𝑃𝐶𝐴 + (�̂�𝑠𝑃𝐶𝐴)′the respective slope estimates of the above two predictive regressions. 

     It is worthwhile mentioning that the scaled predictors (𝛾1𝑋1,𝑡 , … . 𝛾𝑁𝑋𝑁,𝑡 follow a latent factor structure as 𝛾𝑖𝑋𝑖,𝑡 =
𝛾𝑖𝜇𝑖,𝑡 + 𝛾𝑖𝜆𝑖

′𝑓𝑡 + 𝛾𝑖𝑒𝑖,𝑡 where 𝛾𝑖 is the probability limit of gbi for each 𝑖. So the scaled predictors actually share the same 

factors f with the original predictors. Since the forecasted target 𝑦t+h is related to the factors instead of the loadings, This, 

of course, raises the question of how the SPCA forecast can be more accurate than the PCA forecast, especially when 

taking into account each and every component in the forecasting process 𝑦t+h. The solution to this issue is that the SPCA 

eliminates the predictors that are unimportant by giving them decreasing weights. This is how they do it. This process is 

particularly significant because, in contrast to the signals caused by strong variables, the signals caused by weak factors do 

not typically dominate the noises to the same degree. It is possible that the typical PCA won't be able to separate the signals 

from the enormous quantity of noise if there isn't a signal-strengthening process included. 

 
Classification 

Decision Tree (DT) One way to do this is with DT, which can be used to demonstrate an algorithm consisting only of if-

then expressions. Commonly used supervised classification algorithms are compiled into the DTs. They are effective at 

classifying data, their decision-making process is simple to understand, and the algorithm for creating (training) them is 

quick and easy to grasp. 

 

Support Vector Machine (SVM) SVM is a supervised algorithm. This model works wonderfully on a tiny data set with only 

a few extreme observations. Find the hyperplane that will be used to divide the data. Separate regions of two spaces will 

be created using the hyperplane. Data in this category will be organised similarly. The following equation represents the 

decision state of the support vector machine. 

||𝑌|| = √𝑦1
2 + 𝑦1

2 + ⋯ + 𝑦𝑛
2                                                        (11) 

 

Ensemble Learning (EL) Method.  

The performance of a model can be greatly enhanced by employing the machine learning technique of ensemble learning. 

By bringing together several different sets of learners, the model's predictive power is boosted (Base Learners). It is 

impossible to stress the significance of using the right ensemble for diabetes prediction. 

     The proposed methodology has incorporated SVM and DT as basic learners with the EL approach. The following 

equation can be used to express a majority vote.: 

∑ 𝑑𝑡,𝐽 =
𝐶

𝑚𝑎𝑥𝑗=1
∑ 𝑑𝑡,𝑗

𝑇
𝑡=1

𝑇
𝑡=1                                                 (12) 

 

     where T is the dataset and C is the class label. 

 

V. RESULTS AND DISCUSSION 

Instrumentation Testing 

The suggested vibration sensor will undergo instrumentation testing to achieve multiple goals  

 Identifying the range of frequencies at which different types of material flows may be detected. 

 Establishing the accuracy for this range. 

 Locating the range of frequencies at which different types of materials can be detected. 

 

     Connecting the vibration sensor to the frequency generator will yield the first test objective, which will be recorded as 

the frequency registered by the sensor. The sensor performed admirably in all tests, detecting frequencies between 1 and 

9000 Hz with a perfect rate of success. After passing the 1000 Hz mark and into the 3270 Hz region, however, accuracy 

dropped to 99.004%. Additionally, the frequency range at or above 32800Hz is undetectable by the vibration sensor. The 

suggested vibration sensor can thus be stated to measure frequencies from 1 to 9000 Hz. Multiple subtests will make up 

the next evaluation. A total of three tests are used to ensure that the cold lava material identification instrument is 

functioning properly. In the first subtest, stones weighing 30–40 grammes and 20–25 cubic centimetres in volume were 

employed. Following the placement of the vibration second sensor near the end of the landslide, the stones will be released 
in a well-orchestrated landslide. Each group of stones (of which there are ten total) was produced by performing ten repeats. 
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Therefore, we shall perform 100 trials of the subtest. Once the frequencies have been recorded and evaluated, the results 

will be shown. In this subtest's results, 14 Hz is the lowest and 61 Hz is the highest frequency registered. 

      In the second section, participants utilised stones weighing 60–90 grammes and measuring 35–40 cm3 in volume. In 

this section of the test, we may detect frequencies as low as 18 Hz and as high as 87 Hz. In the third experiment, stones 

weighing 100–140 grammes and measuring 50–75 cm3 in volume were employed. We have a range of frequencies from 

25 Hz all the way up to 113 Hz. This research agrees with previous research showing that lahars (cold lava floods) with 

high sediment content (debris flows) preferentially produce significant signals in the low-frequency range. 

      Synchronize with the suggested vibration sensor can accurately detect materials in a simulated cold lava flood at 

frequencies between 14 and 113 Hz. The suggested vibration sensor can thus identify material flows with high accuracy 

and minimal measurement mistakes. The vibration sensor that has been presented possesses a high sensitivity to lower 
frequencies while also being capable of detecting material flows throughout a large frequency range. This discovery is 

essential to the construction of a detection and early warning system for such situations because standard sensors that rely 

on frequency and acoustic measurements to identify lava flows have limits. As a result, this discovery is critical to the 

development of a detection and early warning system. It was difficult to calibrate typical geophone instruments because 

the instrument's high-gain low-frequency channel shows and records signals with low and high frequency independently 

from one another. 

      The sensors were put through their paces in field-scale measurement testing after passing the instrumentation tests in 

the lab. Desa Sumber, Magelang, a small village at the peak of Mount Merapi, was the site of the field trial. Upstream of 

Kali Senowo, three automatic rain gauges and one vibration sensor were set up. These sensors took readings, analysed 

them, and then uploaded the results to the cloud-based systems that make up the IoT. When extremely heavy rain was 

predicted, the system would send out SMS alerts to the FPRB members. Because the vibration sensor measured a frequency 
of less than 1000 Hz, an evacuation alert was not issued. The following are the outcomes of large-scale flood discharge 

tests conducted on-site in Table 1. 

: 

Table 1. Field-scale Test Results. 

Parameters Values 

Watershed Area 20 km2 

Run-off Coefficient 0.9 

Rainfall Intensity Category 
Very 

Heavy 

Measured Flood Peak Discharge 252 m3/s 

 

Detection Results 

Our segmentation and classification results are measured against the challenge evaluation metrics. Criteria including 

sensitivity (SE), specificity (SP), accuracy (AC), recall (R), and precision (P) are used to assess segmentation results (P). 

The benchmarks for success are specified as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (15) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (16) 

 

Where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 and 𝑓𝑛 signify the number of a true positive, true negative, false positive and false negative. 

 

Table 2. Validation analysis of Projected model with existing techniques 

Methodology 

Parameter Evaluation 

Accuracy (%) 
Precision 

(%) 
Recall (%) F-measure (%) 

DT 88.89 79.12 80.92 85.27 

SVM 72.32 80.53 83.69 86.07 

EML 81.43 82.07 90.06 89.28 

SPCA-DT 87.16 81.04 84.17 83.08 

SPCA-SVM 94.38 95.43 96.46 96.34 

SPCA-EML 96.90 97.84 98.20 98.67 

      In terms of the analysis of precision, the DT, EML, and SPCA-DT all achieved results in the range of almost 81% to 

88%, while the SVM achieved results in the range of 72% to 94% and the proposed model achieved results in the range of 

96.70%. Existing methods, which are referred to as DT, achieved 79% precision, 80% recall, and 85.27% f-measure, but 

the proposed model achieved 97% precision, 98% recall, and 98.67% F-measure. The SVM was able to obtain 80% 
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precision, 83% recall, and 86% f-measure, whereas the SPCA-SVM was able to get 95% precision, approximately 965 

recall, and F-measure. The EML had an accuracy rate of 82%, a recall rate of 90%, and an F-measure of 89%, whereas the 

SPCA-DT had an accuracy rate of 81.04%, a recall rate of 84.17%, and an F-measure of 83.08%. But the proposed model 

SPCA-EML achieved 97.84% of precision, 98.20% of recall and 98.67% of F-measure. The results of this analysis make 

it abundantly evident that the proposed model obtained greater performance than the strategies that are already in use. Fig 

4 to Fig 7 presents the graphical comparison of proposed model with existing techniques.  

 

       
      Fig 4. Accuracy Assessment                                                              Fig 5. Precision Assessment 

 

      
                                 Fig 6. Recall Assessment                                                             Fig 7. F-measure Assessment 
 

VI. CONCLUSION 

In this research, we presented a hybrid model for detecting floods using machine learning. The suggested model was trained 

using a dataset that included the keys such as temperature, humidity, rainfall, etc. that were detected using feature extraction 

and SPCA. When compared to the existing methodologies, which obtained about 94% to 96% accuracy and recall for the 

gathered datasets, the results showed that the suggested model achieved 96% accuracy and 98.20% recall. The population 

is not detected or assessed in this study so that aid may be provided and any damages can be calculated. Extending the 

dataset with additional landmarks and attributes will improve the system's accuracy in the long run. A further method for 

bettering the quality of the dataset is feature selection based on rivers, people, and automobiles. In addition to detection, 

various deep learning techniques can be investigated to perform flood inundation mapping, such as RNN and LSTM. In 

areas ravaged by natural disasters, the research can also be combined with methods for determining the most efficient 

routes for vehicles carrying rescue workers and emergency medical personnel. Any country's flood management, fire, and 
search and rescue agencies will benefit from this. 
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