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Abstract – Many real-time applications make use of advanced wireless sensor networks (WSNs). Because of the limited 

memory, power limits, narrow communication bandwidth, and low processing units of wireless sensor nodes (SNs), WSNs 

suffer severe resource constraints. Data prediction algorithms in WSNs have become crucial for reducing redundant data 

transmission and extending the network's longevity. Redundancy can be decreased using proper machine learning (ML) 

techniques while the data aggregation process operates. Researchers persist in searching for effective modelling strategies 
and algorithms to help generate efficient and acceptable data aggregation methodologies from preexisting WSN models. This 

work proposes an energy-efficient Adaptive Seagull Optimization Algorithm (ASOA) protocol for selecting the best cluster 

head (CH). An extreme learning machine (ELM) is employed to select the data corresponding to each node as a way to 

generate a tree to cluster sensor data. The Dual Graph Convolutional Network (DGCN) is an analytical method that predicts 

future trends using time series data. Data clustering and aggregation are employed for each cluster head to efficiently perform 

sample data prediction across WSNs, primarily to minimize the processing overhead caused by the prediction algorithm. 

Simulation findings suggest that the presented method is practical and efficient regarding reliability, data reduction, and 

power usage. The results demonstrate that the suggested data collection approach surpasses the existing Least Mean Square 

(LMS), Periodic Data Prediction Algorithm (P-PDA), and Combined Data Prediction Model (CDPM) methods significantly. 

The proposed DGCN method has a transmission suppression rate of 92.68%, a difference of 22.33%, 16.69%, and 12.54% 

compared to the current methods (i.e., LMS, P-PDA, and CDPM). 

 
Keywords – Wireless Sensor Networks, Adaptive Seagull Optimization Algorithm, Extreme Learning Machines, Dual Graph 

Convolutional Network. 

 

I. INTRODUCTION 

WSNs are independent sensing devices that are spatially distributed and monitor physical or environmental parameters. It has 

numerous uses, such as disaster management, traffic control in smart cities, and environmental monitoring. Power utilization 

and stability are significant issues and crucial challenges in WSNs due to sensor node batteries' limited capacity and frequent 

battery replacement impracticality. The most vital component influencing power consumption is data extraction and 

transmission of packets. This is primarily due to the nodes' mandate to obtain all sensor readings continuously and precisely. 

These nodes require much power throughout each stage of data extraction, accumulation, and transmission [1].  

      As the number of sensor nodes (SN) in WSNs grows, several issues emerge, such as excessive power consumption, long 
network transmission delays, poor transmission quality caused by data transmission congestion, and data transmission 

blocking caused by partial node failure. Data loss/abnormality is a common occurrence in WSNs [2-5], as the financial 

requirements of sensor nodes can often lead to node/link failures. Data prediction is an analytical technique for dealing with 

these challenges [6], in which predictive actions are performed utilizing historical data acquired by sensors. There is no 

requirement for continuous transmission of data measured by sensor nodes while utilizing this technique [7]. Fig 1 shows the 

WSN network model example. 
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      These programmes might be practical in a manner that aids us in reflecting on our surroundings and their flaws. In terms 

of data prediction, the purpose is to create an algorithm that minimizes transfer rate and power consumption and maximizes 

sensor network durability. By this, enough data is gathered to group the present nodes in the configuration and a neural 

network node is utilized to find a suitable CH [8]. Time series forecasting approaches have been developed to capitalize on 

temporal correlation in WSNs. Each node in these systems uses a predictor to execute prediction operations based on prior 
sensor readings. The predictor prohibits sensor readings that deviate from the expected reading by a margin below a 

predetermined error limit from being transmitted.  

 

 
Fig 1. Network Model Example 

 

To the greatest extent of the authors' knowledge, the time series of sensor readings is considered to be stationary and linear in 
all WSN approaches, and a linear time series approach (including ARIMA, ARMA, or AR) is employed for forecasting time 

series. However, the time series created by SN amid the process of detecting ambient conditions is typically non-stationary 

and nonlinear, and linear predictors cannot accurately predict non-stationary and nonlinear time series [9-10]. Simple 

strategies are employed in several previous studies, such as [11, 12], to create predictors for sensor networks to send data 

from the complete sensor array to the base station. Conversely, if there are considerable and constant changes in data values, 

the forecasting methods used in these works may need to be revised. Local prediction utilizing sensor network clustering may 

be an effective technique for addressing this issue.  

      Because the shortest routing path is used to send sensor data, a local predictive algorithm is cost-effective. Still, cluster-

based local prediction confronts various problems. The primary issue is related to the high cost of training predictors, which 

is influenced by the disparity between computation and communication. Another area for improvement is sensor data's 

dynamic nature, primarily when predictive models perform poorly on inconsistent datasets.  
      The energy minimization is accomplished in two phases in this research effort, so data prediction is performed in the first 

stage, and statistical predictive modelling is performed in the second stage. The Wireless Sensor Network uses data 

prediction to forecast future data from all active nodes. An aggregator is a detection node in a network that gathers data and 

transfers it to the other nodes. Rather than delivering all acquired data upon processing it employs proper data prediction 

approaches, aggregator nodes only communicate the required quantity of data. Furthermore, substantial data reduction is 

accomplished in the second step by identifying neighboring nodes that generate data on a regular basis employing a statistical 

data forecasting model. 

     The primary purpose of proposed data forecasting techniques for cluster based WSNs is to minimize radio transmission 

power consumption by minimizing the transmissions between the transmitter and the receiver. To accomplish this, 

researchers must execute compelling data sampling predictions across wireless sensor networks during clustering and 

aggregating data at every cluster head to save overhead. 
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    The critical issues also prompted us to choose cluster-based wireless sensor networks in our study. This work's major 

contributions are outlined below:  

 This work developed a data prediction technique using ASOA, ELM, and DGCN approaches to minimize needless 

data transmission and power usage. The approach leverages a small number of sensor nodes for prediction-based 

data collecting and processing within the cluster.  
 The suggested method consists of two procedures: choosing the CH and data prediction. The nearest Neighbor Node 

is used to construct the cluster. ASOA is used to select the CH. The fitness is determined in the CH selection 

procedure employing RER and distance. 

 In the proposed framework, ELM filters data associated with each node to generate a tree to cluster the data 

collected by the sensors.  

 The dual graph convolutional network (DGCN) is an analytical technique that predicts future patterns using time 

series data. 

 The paper presents a MATLAB simulation using a practical demonstration of the suggested approach to measuring 

the transmission of data packets and utilization of energy in sensor nodes in networks with varying numbers of 

distributed sensor nodes.  

     The rest of this work is structured in the following order: Section II discusses the associated work. Section III discusses 

various preparation approaches as well as the essential modelling process. Section IV compares the performance of the 
suggested technique to that of other relevant techniques, and Section V concludes the work. 

 

II. LITERATURE SURVEY 

Syed Ahmed Suleiman et al. (2020) suggested a hybrid approach using autoregressive integral moving average (ARIMA), 

Kalman filter (KF) decision tree (DT), and decision tree (DT) approaches to anticipate the data sampling demands of SNs to 

decrease needless data aggregation. Data clustering and aggregation are employed for each cluster head to efficiently perform 

sample data prediction across WSNs, primarily to minimize the processing overhead caused by the prediction approach. The 

model's performance was assessed at several epochs and with varying numbers of nodes. Based on experimental results, the 

proposed method surpasses existing relevant methods regarding the accuracy of predictions and energy consumption [13]. 

GC Jagan et al. (2022) suggested a three-phase architecture for an efficient data collection method, with the phases being 

modified LEACH, Bi-LSTM, ELM, and adaptive Kalman filter (KF). The outcomes of this investigation outperform existing 
methods. The findings show that the suggested data aggregation approach surpasses the existing IDAD2DC, EEDP, 

SDNAELWA, and READP techniques [14]. 

Wang Haibin et al. (2021) created a reliable dual predictive data reduction strategy for wireless sensor networks. This 

method reduces data in the Data Prediction Phase (DPP) and the Data Reduction Phase (DRP). DRP's primary goal is to 

decrease the transmissions between SNs and sink nodes, thus reducing power usage. Additionally, it detects and discards 

erroneous data at sensor nodes. According to simulation results, the suggested technique is efficient and successful regarding 

data reliability, data reduction, and power utilization [15]. 

Sathyapriya Loganathan et al. (2020) suggested an energy-efficient self-diagnosing clustering technique for WSNs. 

Rather than choosing CHs at random, an initial cluster head is chosen, and then clusters are formed to achieve more excellent 

performance than previous approaches. The suggested approach determines cluster heads depending on the weighted metrics 

of SNs. The sensor nodes then adapt automatically by rendering the right judgements in real time, utilising the observed data. 

However, the detected information is frequently erroneous owing to mechanical, wireless, and battery difficulties. Compared 
to LEACH, the suggested approach approximately doubles the lifetime, is twice as excellent as QLEACH and ECH, and is 

51% better than the ad-hoc method [16]. 

Khushboo Jain et al. (2022) investigated a combinational data prediction model (CDPM) capable of generating previous 

data to regulate latency and predicting upcoming data to decrease unwanted data transmission. A genuine WSN-based 

programme is simulated by employing a real dataset to test the effectiveness of our suggested CDPM data prediction 

algorithm. The effectiveness of proposed method is also compared to that of the HLMS, ELR, and P-PDA algorithms. The 

findings reveal that the suggested CDPM outperforms a single forward or backward method regarding data transmission 

reduction, power efficiency improvement, and latency regulation [17]. 

Jainism et al. (2020) suggested a two-vector model using the ECR approach for synchronizing prediction data in transit 

within a cluster in order to minimize cumulative mistakes in continuous data forecasts. During the data collecting cycle's 

initialization step, it develops an approximation of future data and determines its prediction error. ECR is a primary, 
unstructured, lightweight, and scalable data-predicting approach. It minimizes data transfer and battery utilization while 

retaining precision, although it is difficult. [18]. 

Jainism et al. (2021) suggested an ELR approach that excludes the Sensor Node from broadcasting significant amounts 

of data for a predetermined time, during which the Base Station predicts upcoming data values, consequently reducing the 
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WSN's power usage. ELR is an energy-efficiency approach for reducing data transmission and prolonging the longevity of 

networks; however, it does not consider using cluster topologies, scalability, or control latency [19]. 

Al-Qurabat et al. (2020) suggested a DGAST technique that collects sensor information regularly and segments the 

network into rounds. Every DGAST round consists of four phases: data aggregation, data accumulation, selective transfer, 

and adjusting the frequency of samples acquired for SN. The suggested model saves electricity and increases the lifetime of 
sensor networks; however, it requires complex computations and a lot of memory [20]. 

Agarwal et al. (2021) suggested a Data prediction technique using linear regression (DP-LRM) model that eliminates 

redundant data transfer by establishing a model of regression of linear descriptors on sequentially observed data values along 

with constructing any data aggregation approach. It employs a buffer using a linear filtering technique to compare and 

correlate all incoming information.  

DP-LRM is an energy-saving approach that effectively decreases data transmission costs while maintaining reliability 

and accuracy at low data volumes. However, it is analytically complicated and fails to consider flexibility [21]. 

Nelson et al. (2021) proposed combining HFBLMS and QKLMS to create HFQKLMS filters. The HFBLMS approach 

was created by incorporating FC theory with the HLMS method. For data aggregation, the prediction procedure employs the 

HFQKLMS filter technique. This technique is energy-efficient, preserves accuracy on tiny information, and increases 

network longevity, but it is analytically challenging and needs to consider scalability [22]. 

Wang et al. (2021) suggested a data reduction (DR) method employing the KF. The approach reduces data in two stages: 
data prediction and data reduction. This practical and successful DR method is dependable, energy-efficient, and increases 

system longevity. However, it has a significant computational overhead and ignores using cluster topology and scalability of 

the network [23]. 

Jain et al. (2021) presented Data transmission reduction method (DTRM) execution in Cluster Heads. This research 

disables temporal redundancy and data reading correlation, allowing SNs to send only a small number of data values, 

boosting data transmission efficiency and lowering power consumption. However, DTRM is based on single-value 

comparisons and delivers data correctness, decreased data transfer, low complexity cost, lightweight processing, restricted 

memory consumption, robustness, and efficiency [24].  

Famila et al. (2021) hypothesised that RCHST-IETSMP uses a Hyper-Erlang procedure to combine two major energy-

defining parameters and a confidence parameter in order to pick a Hyper-Erlang distribution using process-integrated Semi-

Markoc predictions successfully. This approach is dependable and extends the lifetime of wireless sensor networks, but it is 
computationally complicated because it needs to consider scalability and control delay. [25]. Table 1. Analyses All of the 

Previously Stated Data Transmission Techniques in WSNs With Widely Recognized Features. 

 

Table 1: WSN comparison of existing data transmission approaches 

Reference Techniques used Contribution Limitation 

[18] 
Extended cosine regression 

(ECR) 

Prediction model that is simple and 

lightweight 

Not compatible with the cluster-

based structure and fails to 

control delay 

[19] ELR 
Data transmission is reduced, and 

network life is extended. 
It is not scalable 

[20] 

Data collection and 

aggregation combined with 

selective transmission 

Conserve energy and extend the life of 

periodic networks 

Complicated computations and 

extensive use of memory 

[21] DP-LRM 
Retains accuracy and minimizes the 

transmission cost 

The complexity of algorithms is 

high 

[22] HFQKLMS 
Efficient use of energy, 

Excellent accuracy 

Fails to control delay 

 

[23] 
Kalman filter-based data 

reduction method 

Data transmission and consumption of 

energy are reduced 
High computing overhead 

[24] DTRM 
Minimal complexity costs, 

Reliable and efficient 
Single value comparison 

[25] RCHST-IETSMP WSN longevity is extended 
There is no effective CH 

selection, and the algorithmic 

complexity is high 
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Major Contribution 

Numerous techniques for minimizing data transfer in WSNs have been developed, although control latency has not been 

introduced yet. Compared to the approaches and techniques outlined above, the suggested algorithm has the advantage of 

regulating latency and minimizing power consumption by attaining significant data transmission denial and lower RMSE 

(better data quality). 
 

III.  PROPOSED METHODOLOGY 

This work uses WSN to provide an adequate data aggregation technique for WSN operating machine utilization prediction. 

ASOA, ELM, and DGCN are utilized to anticipate the following three stages, as illustrated in Fig 2. 

 

Network Model 

The sensors are linked and distributed randomly and can shift dynamically from one spot to another. The sink is in the middle 

of the network. The suggested ASOA optimization algorithm selects the most suitable CH on the sink. CH can be joined by 

its nearest neighbor nodes. CH takes data from cluster neighbors and transmits aggregated data to the BS. 

 

 
 

Fig 2. Stages of the Proposed Algorithm 

 

Adaptive Seagull Optimization Algorithm Based Clustering Algorithm 

Seagulls are a group of extremely smart creatures that live on the Planet and can be found in various shapes and sizes. 

Seagulls are migratory birds that travel in response to seasonal weather variations to find sufficient nourishment sources. The 

seagull optimization algorithm's fundamental idea is to imitate the seagulls migratory and attack behavior and to discover the 
ideal explanation by constantly modifying the position of the seagull. 

 

Biological Characteristics  

Gulls are the foremost familiar seabirds in many seaside cities; they typically live in clusters and use their brilliance to locate 

and attack the bait. Seagulls have two distinct behaviors: migratory behavior and aggressive behavior. As the term implies, 

migration refers to the transportation of animals from one location to another in a certain manner in response to changes in 

the weather to grab enough food resources to retain their vitality production. In the course of migration, gulls generally fly in 

groups, each individual bird flying at a different place along the trip to prevent collisions between seagulls. Each seagull in a 

group can change its location by travelling in the direction of the optimal location; simultaneously, the seagulls will execute 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 3(4)(2023) 

 

365 
 

the assault behavior necessary to obtain nutrition; while attacking, the seagulls will constantly move in a spiral motion, 

similar to flying [26].  

 

Bio Mathematical Modeling  

A random seagull is selected according to the biological conditions of the seagull population, and a corresponding 
mathematical representation is utilized to define, describe, and execute its migratory and migratory behavior.  

 

Migration Behavior  

The approach replicates the manner in which gull populations migrate from one place to another during migration. At this 

point, every seagull must meet the following conditions:  

 

Collision Avoidance: To avert collisions with nearby seagulls, the technique estimates the updated location of the particular 

seagull employing an additional parameter X. The parameter X controls the avoidance of collisions between nearby seagulls. 

 

𝑁⃗⃗ 𝑠 = 𝑋 × 𝑝 𝑠(𝑇)       (1) 

 

X=𝑓𝑐 − (𝑇 × (𝑓𝑐/𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))            (2) 

 

In Equ (1) and (2), 𝑁⃗⃗ 𝑠 represents the updated location gained by the seagull activity, and the resulting location is unlikely to 

conflict with other seagull locations. The seagull's current position is represented by 𝑝 𝑠(𝑇). T is the current number of 

iterations of the algorithm, and 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 represents the maximum number of iterations of the algorithm in the process. 

X refers to the additional metric stated to prevent collisions with nearby seagulls (other seagulls). 𝑓𝑐  represents a hyper-

parameter assigned by the technique, and its variable is fixed to 2, ensuring that the variable X declines linearly from 2 to 0 

when the number of iterations T is repeated.  

     Migrate in the path of the optimum neighbor: Individual seagulls move toward their optimum neighbor to prevent 

collision with neighboring seagulls. 

𝐷⃗⃗ 𝑠= 𝑌 × (𝑝 𝑏𝑠(𝑇) − 𝑝 𝑠(𝑇)      (3) 

 

Y = 2× 𝑋2 × 𝑅𝑛      (4) 

 

In Equ (3) and (4), 𝐷⃗⃗ 𝑠 represents the optimal seagull's direction and 𝑝 𝑏𝑠(𝑇) represents the optimum neighbor's (other 

seagull's) location direction. 𝑅𝑛 is a random number in the interval [0, 1], and it can interfere with the technique's execution 

by making independent random modifications within the interval of values selected, averting the technique from slipping into 
a local optimum throughout implementation. Y is another random number using the variable X, and the variable Y is utilized 

to determine the global or local search of the technique.  

      The optimum seagull position is approached as follows: After travelling to the optimum neighbor's direction, every 

seagull will shift to the globally optimal path and eventually arrive at an alternative location. 

 

𝐶 𝑠 = │𝑁𝑠 + 𝐷⃗⃗ 𝑠│       (5) 

Where 𝐶 𝑠 incorporates the requirements for seagulls to prevent collisions and migrate to the optimal individual, which can be 

described as another updated location attained by the seagull and the spacing between the current seagull and the optimal 

seagull.  

 

Attacking Behavior  

Seagulls are very intelligent creatures that may use their past and experience to find food. Because of the necessity for long-

term hunting and repeated attack behaviors during migration, seagulls rely on wings and weight to retain a high degree of 

stability when attacking prey, and the specific spiral movement behavior in flight is continually changing. Its altitude and 
angle of attack. When a seagull attacks, it moves in the 3D a, b, and c planes, as shown below. 

𝑎 = 𝑅 × cos (𝑘)      (6) 

 

𝑏 = 𝑅 × sin (𝑘)      (7) 

 

𝑐 = 𝑅 × 𝑘       (8) 

 

𝑅 = 𝑢 × 𝑒𝑘𝑣       (9) 
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where R is the flight radius of the spiral when the seagull assaults, k is a random number in the range [0, 2π], u and v are 

constants explaining the spiral shape, which are commonly defined as 1, and e refers as the base of natural logarithms. 

 

𝑝 𝑠(𝑇) = (𝐶 𝑠 × 𝑎 × 𝑏 × 𝑐) + 𝑝 𝑏𝑠(𝑇)    (10) 

 

      Above, 𝑝 𝑠(𝑇) is an updated phrase that determines the final seagull search position by combining migratory and assault 

behaviors. Flowchart of adaptive seagull optimization algorithm is shown in Fig 3. 

 

 
 

Fig 3. Flowchart of Adaptive Seagull Optimization Algorithm 

 

Extreme Learning Machines (ELM) 

The ASOA output is routed through extreme learning machines to remove redundant and error-prone information. The 

extreme learning machine is a feed-forward neural network with distinct learning stages, as shown in Fig 4. The projection 

stage is not trainable, and the input values are determined randomly. There is no need for iterative calculations. This feature 

shortens training model computation time; however, random bias and weight selection can result in unstable predictions. It is 

proposed to merge the Mahala Nobis distance-based radial basis function (MDRBF) with the ELM network to address ELM's 

inadequacies. 

 
Dual Graph Convolutional Network (DGCN) 

DGCN is built on a symmetrically interlinked network framework, and it receives a single raining input as X and predicts its 

non-raining variant Y. Network comprises two feature extraction layers, several basic units, and two reconstruction layers. 

The feature extraction layer uses a conventional 3 x 3 convolution operation to extract shallow features from the rain input. 

As illustrated in Fig 5, the two shallow traits are spread to deeper layers via interlink [27, 29].  

      The network is made up of various fundamental modules, including a multi-scale convolution with a dilation module and 

a global GCN module for capturing local and global input. To transport shallow features to deep layers, use symmetric layer 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 3(4)(2023) 

 

367 
 

skip connections. We build fundamental components based on the proposed module to assemble the proposed dual-graph 

convolutional network for predicting data. In particular, this work initially designed a spatial GCN module in each unit to 

acquire global spatial information from the preceding unit. 

 

 
 

Fig 4. Structure of ELM Network 

 

This global spatial information is then supplied into the convolution with a dilation module, which aids in the extraction of 
local spatial features from several scales. Finally, to get content information in addition to spatial information, the technique 

employs the Channel GCN module to investigate the association between features with rich global and local spatial 

illustrations. The flow of the proposed model's fundamental unit is described above: 

 

𝑓𝑢𝑛𝑖𝑡 = 𝑓𝑖𝑛 + 𝑐𝐺𝐶𝑁(𝐷𝐶𝑀(𝑠𝐺𝐶𝑁(𝑓𝑖𝑛)))    (11) 

 

      Where DCM(•), cGCN(•),and sGCN(•) represent the dilated convolutional module, channel GCN module, and spatial 

GCN module, respectively. This work uses 1x1 fundamental units to construct the de-raining network. Furthermore, 

symmetric skip connections are used in this work to link deep and shallow layers and prevent the gradient from fading. 

 

 
 

Fig 5. The Overall Architecture of Proposed Dual Graph Convolutional Network  
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Loss Function  

Mean squared error (MSE) is the most commonly utilized loss function for training a neural network. However, because of 

its' penalty, MSE frequently produces over-smoothed results. To overcome this issue, the work uses the mean absolute error 

(MAE) to strike a compromise between data prediction and detail preservation. 

 

𝐿 = 
1

𝑚
 ∑ ‖𝑦𝑖 − 𝑦𝑔𝑡,𝑖‖1′

𝑚
𝑖=1        (12) 

 

       Where 𝑚 denotes the total number of training data, 𝑦𝑖 represents the predicted data and 𝑦𝑔𝑡  represents the actual data. 

Activation functions process the input data in both the forward and backward layers, and the outcome is produced as an 

output. 

IV. RESULTS AND DISCUSSION 

A simulation based on the utilization of the Internet of Things is used to assess the suggested method in Table 2. To train the 

proposed model, the Annamalai University Next Generation Laboratory collects roughly 2,400 real-time sensor reading 

samples every day. Using publicly available sensor datasets, we chose a set of temperature and humidity measurements 

recorded every 31 seconds from our laboratory sensor implementation. The suggested DGCN's performance is also compared 

to the LMS [30], P-PDA [31], and CDPM [17] algorithms. 

 
Table 2. Simulation Parameters 

Parameter Value 
 

Initial energy (𝐸0) 1J 

Sensor Nodes (N) 1500 

Prediction Threshold (ᵟ) 0.5,1.0 

Data packet (D) 500 bytes 

Network Area 1000mx1000m 

Transmission energy (𝐸𝑇𝑋) 
 

150 nJ/s for 1- bit,10m 

Simulation time interval (T) 150 s 

Aggregation energy (𝐸𝐷𝐴) 
 

5(nJ/bit)/s 

Reception energy ((𝐸𝑅𝑋) 
 

50nJ/s for 1-bit 

Free space amplifier energy (𝜖𝑓𝑠) 

 
10(pJ/bit)/𝑚2 

 

Transmission Suppression (TS) 

Transmission suppression is a calculation of the ratio of sent data using any data prediction model to actual sensed data 

without applying any data prediction technique. 

 

TS% = (
Transmitted data by using prediction algorithm

actual sensed data
 ) x 100   (13) 

 

This work calculates the TS% of the four algorithms for the SN's mean temperature and mean humidity. The greater the 

TS%, the less data is transported and the lower the power consumption. The TS% of the four algorithms for the SN's mean 

temperature and mean humidity are depicted in Fig 6 and 7, respectively, and are shown in Table 3. The suggested DGCN 

TS% is constantly more excellent than the LMS-TS, P-PDA, and CDPM techniques' thresholds for any round of 

communication. 

Table 3. TS% of SNs' Average Temperatures and Humidity 

S.No Threshold 
Average temperature of SNs Average Humidity of SNs 

LMS P-PDA CDPM Proposed LMS P-PDA CDPM Proposed 

1 0.05 34.99 46.89 59.79 72.85 43.52 52.95 67.97 75.86 

2 0.10 46.70 55.54 68.69 75.64 54.66 59.83 74.98 88.87 
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3 0.15 59.67 66.33 73.76 83.75 59.89 64.79 78.96 91.64 

4 0.20 69.77 75.65 79.62 87.88 66.88 70.93 80.69 93.88 

5 0.25 75.76 79.42 82.35 92.68 69.99 77.78 82.98 94.64 

 

 
Fig 6. Transmission Suppression for Average Temperature 

 

 

 
Fig 7. Transmission Suppression for Average Humidity 
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Energy Consumption 

The quantity of energy utilized in a wireless sensor network is proportional to how much radio communication the SN does. 

Reducing the total data transferred to the Base Station will significantly extend the wireless sensors network’s lifetime. The 

greater the TS, the less data is transmitted, and the less power is consumed in Table 4. 

 

Table 4. Energy Consumption % of Average Temperatures and Average Humidity of SNs 

S.No Threshold 

Average temperature of SNs Average Humidity of SNs 

LMS P-PDA CDPM Proposed LMS P-PDA CDPM Proposed 

1 0.05 32.56 22.34 13.32 9.10 11.20 7.05 5.36 4.10 

2 0.10 33.53 20.62 11.25 7.01 11.31 7.10 5.31 3.65 

3 0.15 31.16 18.34 10.40 6.34 10.15 6.34 4.07 3.02 

4 0.20 27.17 16.21 9.34 5.02 9.26 6.00 4.43 2.01 

5 0.25 21.52 14,35 7.33 5.61 8.14 5.75 3.67 1.67 

 

 

 
 

Fig 8. Energy Consumption for Average Temperature 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 3(4)(2023) 

 

371 
 

 
Fig 9. Energy Consumption for Average Humidity 

 

Since most data prediction methods diminish data throughput, this work compares DGCN energy consumption to that of the 

LMS, P-PDA, and CDPM algorithms. DGCN is used in conjunction with these three algorithms to collect data from 10 

rounds of communication, with every round having a configurable threshold ranging from 0.05 to 0.25 and a step function of 

0.5. This work calculated the energy utilization using an energy model of the SN's mean temperature and humidity.                          

Fig 8 and 9 demonstrate the power usage of the four techniques for SN's average temperature and humidity. 

 

Data Equality 

Data quality is vital in determining excellence in the Wireless Sensor Network. This work previously discussed Root Mean 

Squared Error (RMSE) as a means to reduce the error of data perceived by any SN. 
 

RMSE=√
1

𝑀
∑ (𝐸𝑖)2𝑀

𝑖−1                              (14)                                                  

               where 𝐸𝑖 = 𝑃𝑖  -P̂i; Pi is the actual data of SN and P̂i is the predicted values of SN. 

 

Table 5. RMSE % of Average Temperatures and Average Humidity of SNs 

S.No Threshold 

Average temperature of SNs Average Humidity of SNs 

LMS P-PDA CDPM Proposed LMS P-PDA CDPM Proposed 

1 0.05 0.020 0.015 0.012 0.01 0.023 0.021 0.016 0.013 

2 0.10 0.023 0.017 0.013 0.011 0.030 0.027 0.021 0.017 

3 0.15 0.025 0.019 0.015 0.012 0.037 0.030 0.025 0.023 

4 0.20 0.027 0.025 0.021 0.019 0.040 0.036 0.033 0.027 

5 0.25 0.037 0.029 0.026 0.023 0.052 0.047 0.040 0.036 

 

Fig 10 and 11 show that changing the threshold value (0.05 to 0.25) reduces the root mean squared error of the four humidity 

and temperature algorithms, resulting in greater data accuracy. However, the suggested approach's data accuracy is always 

superior because it has the lowest root mean squared error value of all thresholds. As a result, while maintaining high data 

accuracy, the suggested method has a more effective data suppression rate and improved power efficiency. 
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Fig 10. RMSE for Average Temperature 

 

 
Fig 11. RMSE for Average Humidity 

 

Positive Prediction 

By adjusting the threshold and adding the successful prediction data supplied in every round, the overall number of 

successful predictions is computed, and the percentage of correct predictions is computed over various criteria in Table 6. 
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Table 6.  Positive Predictions 

S.No Threshold LMS P-PDA CDPM Proposed 

1 0.1 99.64 100.76 115.77 158.90 

2 0.2 101.97 105.78 134.98 180.41 

3 0.3 102.5 120.98 160.98 210.80 

4 0.4 109.9 145.44 190.54 240.42 

5 0.5 122.69 156.63 200.57 270.89 

 

 
Fig 12. Evaluation of Positive Predictions 

 

Table 6 shows that the proposed DGCN algorithm outperforms LMS, P-PDA, and CDPM regarding the number and 

percentage of positive predictions. The case of DGCNs with different thresholds, the total number of positive predictions is 

relatively high. As illustrated in Fig 12, the number of successful predictions nearly doubles compared to other existing 

algorithms. This ensures that the proposed algorithm is correct and reliable. 

 

Number of Packets Transmission 

Table 7. Comparison Between the Overall Packet and Node Counts 

No.of nodes 
Without 

prediction 

With prediction 

LMS P-PDA CDPM Proposed 

200 1.5 0.3 0.25 0.20 0.06 

400 2.2 0.6 0.36 0.28 0.10 

600 2.5 0.9 0.5 0.32 0.18 

800 2.8 1.10 1.0 0.6 0.4 

1000 3.0 1.58 1.35 1.10 0.7 

1200 3.3 2.0 1.78 1.5 1.4 

1400 3.9 2.5 2.32 1.8 1.56 
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Fig 13. Evaluation of Number of Packet Transmission 

 

Fig 13 depicts various approaches and the network's scalability for real-time data sets. The LMS method of transferring data 

to the recipient has a high communication cost. Furthermore, advanced computations, such as computationally expensive 

aggregations, complicate P-PDA. Our model is capable of predicting and updating local data. As a result, the proposed 

algorithm processes raw data at sensor nodes or intermediate nodes using data aggregation techniques, which reduces packet 

transmission and saves power while improving performance. 

 

Performance Evaluation of All Algorithms 

MAE(x,𝑥) =
1

𝑛
∑ │𝑥𝑖 − 𝑥𝑖̂

𝑛
𝑖=1 │    (15) 

                                      

MAPE(x,𝑥) =
100%

𝑛
∑ │

𝑥𝑖−𝑥𝑖̂

𝑥𝑖

𝑛
𝑖=1 │   (16)  

                                           

𝑅2 = 1 −
𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑡𝑜𝑡𝑎𝑙
        (17)    

                                                              

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ∑ (𝑥𝑖 − 𝑥𝑖)
2

𝑖       (18)   

                                                  

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑥𝑖 − 𝑥̅𝑖)
2

𝑖       (19)   

                                                      

 

In the preceding equations, 𝑥𝑖 , 𝑥𝑖̂, 𝑎𝑛𝑑 x represent the true, predicted, and average values, respectively. The number of 

samples is denoted by n. MAPE denotes the ratio of prediction bias to the actual value. Because each data type has a different 

data range, the calculated error varies significantly between them. The 𝑅2 can be defined as the ratio of the predicted mean 

square error to the variance of the data. It denotes the fitness of the predicted and actual values. Table 8 displays the 

calculated evaluation indicators. 
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Table 8. Predictive Evaluations of Multiple Models 

Algorithms MAPE MAE 𝑹𝟐 Computing time (ms) 

LMS 1.1765 0.1125 0.9841 0.10 

P-PDA 0.6080 0.1065 0.9856 0.09 

CDPM 0.3287 0.0887 0.9888 0.07 

Proposed 0.2062 0.0545 0.9925 0.05 

 

Fig 14 depicts a loss function performance comparison of LMS, P-PDA, CDPM, and the suggested DGCN. It can be seen 

that the suggested DGCN has the lowest MAPE, MAE, and R2. The DGCN MAE for the following sensor data is 0.0545 for 

the given temperature dataset. 

 

 
Fig 14. Performance Comparison of Proposed Prediction Among All Algorithms 

 
Fig 15. Computing Time of Proposed Prediction Among All Algorithms 
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Fig 15 shows computational time comparisons for predicting individual sensor values. It can be seen that LMS has the 

longest computation time of 0.010 ms, while the suggested DGCN has the shortest computation time of 0.05 ms. The 

suggested algorithm outperforms existing algorithms. 

 

 
Fig 16. Prediction Accuracy for Various Data Sets 

 

 
Fig 17. RMSE Prediction Error Using DGCN 

 

      Fig 16 and 17 show the predictive efficiency for non-dynamic data on both datasets, demonstrating the system's 

effectiveness. 
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V. CONCLUSION 

This work suggests a method based on clusters and predictions for collecting energy-saving data. During the clustering stage, 

the sensor nodes form groups, and the heads of the groups gather and save the data estimated by the sensor nodes. The 

presented hybrid prediction model investigates the relationship between communication and prediction. The model's 

performance was evaluated by employing different numbers of nodes at different times. According to simulation results, the 
proposed model outperforms other related methods regarding energy efficiency and prediction accuracy. As a result, it may 

substantially decrease energy use for data accumulation in hierarchical networks and significantly increase network 

longevity, even when many clusters are allocated. The results show that the proposed data aggregation method surpasses 

existing LMS, P-PDA, and CDPM methods. The proposed DGCN method has a transmission suppression rate of 92.68%, a 

difference of 22.33%, 16.69%, and 12.54% compared to current methods (i.e. LMS, P-PDA, and CDPM). In future work, 

traffic generators, including LoRa network operators, can be incorporated into the suggested application. 
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