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Abstract – Detecting foreground objects in video is crucial in various machine vision applications and computerized video 

surveillance technologies. Object tracking and detection are essential in object identification, surveillance, and navigation 

approaches. Object detection is the technique of differentiating between background and foreground features in a photograph. 

Recent improvements in vision systems, including distributed smart cameras, have inspired researchers to develop enhanced 

machine vision applications for embedded systems. The efficiency of featured object detection algorithms declines as 

dynamic video data increases as contrasted to conventional object detection methods. Moving subjects that are blurred, fast-

moving objects, backdrop occlusion, or dynamic background shifts within the foreground area of a video frame can all cause 

problems. These challenges result in insufficient prominence detection. This work develops a deep-learning model to 

overcome this issue. For object detection, a novel method utilizing YOLOv3 and MobileNet was built. First, rather than 

picking predefined feature maps in the conventional YOLOv3 architecture, the technique for determining feature maps in the 

MobileNet is optimized based on examining the receptive fields. This work focuses on three primary processes: object 

detection, recognition, and classification, to classify moving objects before shared features. Compared to existing algorithms, 

experimental findings on public datasets and our dataset reveal that the suggested approach achieves 99% correct 

classification accuracy for urban settings with moving objects. Experiments reveal that the suggested model beats existing 

cutting-edge models by speed and computation. 

Keywords: Object Detection, Classification, Deep Learning, Image Classification. 

I. INTRODUCTION

Understanding dynamic features in objects is critical in autonomous environments. The outdoor surveillance system employs 

freely moving event cameras. However, external variables make the structure not static, resulting in higher energy and time 

utilisation [1]. Using decades of machine vision research, we have addressed specialised object recognition challenges, 

including computerised assembly line sorting and inspection systems, handwriting detection on postal sorting machines, and 

ATM bill inspection. Despite these successful uses, the appearance of objects can be summarised in a well-controlled sensing 

environment, resulting in reliable and practical solutions for industrial difficulties that include perception and robot 

navigation [2]. 

The most crucial thing to bear in mind is that event cameras are not generating output pixel intensity levels but rather 

accurately time-stamped spikes, which are defined as events exhibiting a sufficient shift in pixel capturing intensity. In the 

end, event cameras use less transmission bandwidth and only use a few hundred. To summarise, event-based cameras adopt a 

distinct method of visual imaging by concentrating on low-latency and lightweight algorithms [3]. The reliability of the 

adaptive neuro fuzzy inference system (ANFI Stability) for categorising objects that move in a Street View application was 

examined. Neuro-fuzzy modelling combines the benefits of fuzzy logic and neural learning models, helping the framework 

defend actions based on object classification judgements [4-6]. 
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Convolutional Neural Networks (CNNs) minimize the requirement for physical feature extraction in object classification 

utilization, removing previously determined image classification features. CNNs extract features from photos directly. Deep 

learning models are currently entirely accurate in various applications ranging from image processing to autonomous feature 

extraction. Deep CNN architectures employ complex models [7]. A larger picture of data collection is required for increased 

precision. To execute computer vision tasks, including object categorization, finding, recognition, and object tracking, CNNs 

require massive labelled data sets [8]. 

In dynamic object identification algorithms, static cameras are at the heart of cutting-edge techniques. This necessitates 

the employment of moving event cameras with dynamic object detection techniques. Despite the enormous benefits of event 

cameras, there yet needs to be a noticeable discrepancy in performance for different vision challenges among event camera 

techniques and frame-based algorithms. Additionally, frame-based detection increases hardware complexity, including the 

need for strong GPUs to efficiently retrain and build next-generation object identification frameworks [9-10]. This paper 

provides a straightforward and energy-efficient method for object recognition and classification compared to prior efforts. 

Lastly, the bounding box regressor should be trained. Selective search can produce region recommendations with a good 

recall, but the recovered suggested regions are time-consuming and tiresome. There are also some modifications to address 

the issue of erroneous placement. Many solutions to these difficulties have been presented [11-12]. 

The following is the contribution of this paper:  

 Collecting diverse real-time video dataset and converting it into frames.  

 A new object detection technique based on YOLOv3 and MobileNet is created. To begin, the feature map 

determination approach in the MobileNet backbone is optimized based on receptive field analysis. 

 YOLOv3-MobleNet incorporates a Kalman filter to eliminate high-frequency noise elements for a smooth video 

frame to recognize numerous targets in a single video frame. The smoothed image is then utilized to identify 

objects in the background image using a background subtraction technique with a moving window. 

 This work creates a simple and efficient tracking and detecting system for long-term event camera tracking and 

describes the several benefits of utilizing event cameras for object identification and tracking  

The article is structured in the following order: the second section discusses previous work, the third section goes through 

the proposed approach, the fourth section goes over the results and discussion, and finally, the fifth section concludes the 

work. 

II. LITERATURE SURVEY 

Alexander Kugele  et al. (2021) suggested a hybrid deep neural network complete training architecture for event-based 

pattern identification and object detection, with a spiking neural network (SNN) backbone for effective event-based feature 

extraction, followed by classic simulations. A neural network (ANN) is in charge of solving classification and detection tasks 

simultaneously. To do this, traditional back propagation is combined with agent gradient training to propagate gradients 

within SNN layers. Without additional conversion stages, hybrid SNN-ANNs can be trained to produce high-precision 

networks that are substantially faster in computation than their ANN predecessors [13]. 

Etienne Perrault et al. (2020) addressed all of these challenges in the context of event-based tasks for object detection. 

Initially, we made public an initial large-scale, high-resolution object detection dataset. More than 14 hours of 1-megapixel 

event camera footage in automotive scenarios are included, as well as 25 million high-frequency tagged auto, pedestrian, and 

two-wheeler bounding boxes. Additionally, they describe an innovative recursive framework for event-based detection and 

time consistency loss in order to improve behavior training. Experiments on the data set described in this paper, which 

includes grayscale events and images, indicate comparable performance to highly tuned and widely researched frame-based 

detectors [14]. 

Bharath Ramesh et al. (2020) developed an event-based feature extraction approach by aggregating local activities in 

image frames and using principle component analysis (PCA) to normalize neighboring regions. As a result, the proposed 

system can be implemented in an FPGA tool, resulting in an excellent performance-to-energy ratio. The suggested approach 

outperforms current methods for object detection when evaluated on a data set based on real events [15]. 

Shixiong Zhang et al. (2022) developed an event camera based dynamic object-tracking system to accomplish long-period 

steady event object detection. Using an adaptive method to match the spatiotemporal scope of event data is a crucial 

innovative element of our approach. To that end, we use online learning to rebuild event images from rapid access to 

asynchronous streaming data. Unlike standard object tracking jobs that use a fixed camera, all three tracking scenarios 

include the camera and object violently rotating and shaking simultaneously. Experimental findings reveal that the suggested 

method surpasses previous state-of-the-art techniques regarding precision and resilience [16]. 

Miguel Angel et al. (2021) presented an event-by-event analyzing approach for employing UAS to identify human 

infiltration. These include: 1) recognizing clusters of events created by objects that move on a static background; and 2) 

calculating the chance that a group corresponds to a person using convolutional neural networks. The proposed technique has 

been implemented and tested in difficult conditions. The proposed technique was constructed and empirically validated in 

challenging, cluttered scenarios with varying illumination conditions and item types. The performance validation reveals 
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precision rates of more than 90%, accuracy values greater than 70%, and recall levels greater than 70%, verifying its intended 

functionality [17]. 

Srinivas et al. (2022) examined frameworks for these activities using better cyber security control facilities. The technique 

is divided into two stages: detection of numerous objects using the cyber security probabilistic Gaussian mixture model and 

background suppression, and tracking of multiple moving objects using the kernel convolution moving window with kalman 

filter. Simulations outcomes show that the suggested approach can identify and locate objects in complicated and shifting 

environments with excellent efficiency, resilience, and accuracy. This proposed model also yields a noise-free image [18]. 

Kyung Pyo Kim et al. (2020) proposed a methodology for enhancing deep learning (DL)-based identification accuracy 

using shape data gathered from LiDAR point clouds. This research also presents a layer-based building technique that takes 

into account the three degrees-of-freedom motion of dynamic objects in order to augment this shape information properly. In 

experiments, the suggested cumulative technique beats existing log-based algorithms. Furthermore, in the actual car data test, 

the DL algorithm trained on simulated data performed better when gathering the lidar point cloud [19]. 

Guray Sonugur et al. (2022) suggested a two-stage Interconnected Artificial Neural Network (ICANN) framework. At the 

end of the GPS-assisted picture registration procedure, live images are transformed into binary images in the first stage. The 

shape of a silhouette is then created by labelling related components in the image background. Two interlinked neural 

networks are employed in the second stage. The initial neural network determines if the outlines are objects or noise. The 

maximum success percentage for object classification in experimental investigations was 96.1%. The acquired findings are 

compared to the currently popular YOLO object identification technique [20]. 

OA Pakhomova et al. (2019) developed a method for implementing a motion-detecting approach to enhance the 

effectiveness of the movement vector search technique used by the detection subsystem; the basic idea is to break each frame 

into blocks and look for similar sections in the subsequent frames. The study outcomes demonstrate the method's efficacy. To 

remove them, a motion detection module is suggested to be integrated into a multipurpose machine vision framework that 

collects images from cameras at the input and communicates accumulated information on the objects seen through parallel 

streams at the output.  

The detection module is in charge of searching for and detecting movement, as well as concealing extraneous information 

and presenting only the areas required for further classification [21]. 

TJing Yunduo et al. (2021) suggested an event camera corner extraction and tracking technique that is asynchronous in 

real-time. The primary motivation for this paper is to increase corner identification and tracking accuracy while maintaining 

computing efficiency. Lastly, to enable corner event tracking, we offer a data association strategy with temporal, velocity, 

and spatial direction constraints, in which they associate a recently arrived corner event with the last active corner in its 

neighbourhood that fulfills the speed direction requirement. The trials are carried out on the conventional event camera 

dataset, and the findings reveal that the technique performs exceptionally well in corner detection and tracking [22]. 

Justas Furmonas et al. (2022) summarize the approaches and systems based on events that have been reported and are 

now known. An examination of these approaches and frameworks analytically supports the findings reached. The paper 

finishes with suggestions and proposals for future improvements in the domain of events using chamber depth estimation. A 

recent study demonstrates the use of SNNs, unsupervised and supervised neural networks. Nevertheless, many approaches 

continue to perform poorly due to a shortage of suitable training data sets [23]. 

Takehiro Ozawa et al. (2022) suggested a method for predicting motion in bird's-eye view space using contrast 

optimization. This paper reduces the dimensionality to a 2D motion estimate rather than a 3D motion estimate by translating 

the dataset to a bird's-eye view employing homograph derived from the camera position. This conversion solves the issue of 

non-convex loss functions in previous approaches. The experimental findings with CARLA and real-world data show that the 

suggested approach is efficient and accurate [24]. 

 

Problem statement 

A deeper design gives tenfold greater effusive capability when compared to standard shallow models. To achieve high 

detection accuracy, the following issues must be resolved: 

 Intra-class variances: shape, size, material, colour, and position differences in real-world objects. 

 Image circumstances and unconstrained surroundings: variables including blur, lighting, shadow, weather conditions, 

clutter, occlusion, physical object location, motion, and viewpoint.  

 Imaging noise: compression noise, filter distortions, and low-resolution images are instances of imaging noise.  

 The detector must discriminate between thousands of organised and unstructured real-world item categories. 

 Low-end mobile devices possess restricted speed, memory, and processing capabilities.  

 There should be distinctions between thousands of open-world object classes. 

 Image or video data on a large scale. 

 Impossibility of handling previously unseen objects. 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 3(3)(2023) 

285 
 

The fundamental idea is to use a CNN on the image to complete the task. CNN performs tasks on image patches, and 

many of these highlighted regions can be produced utilizing region-suggested networks, including the Regional 

Convolutional Neural Network (RCNN), the Fast-Region Convolutional Neural Network (Fast-RCNN), and the Faster-

Region Convolutional Neural Network (Fast-RCNN). A hierarchical clustering approach is utilized to do a selective object 

recognition search. These approaches have a few bottlenecks that can be addressed with cutting-edge techniques, including 

You Only Look Once (YOLO) and Single Shot Detector (SSD). An effective object identification method is a technique that 

recognizes bounding boxes for all real-size objects while using powerful computing resources and a faster processing speed. 

YOLO and SSD provide promising outcomes. However, there is a trade-off between speed and precision. As a result, the 

choice of method is application-specific [25]. 

In instances of dynamic objects in the background, the LIBS approach does not deliver the most accurate results. Suppose 

there is a slight change in the background, such as swinging a sheet or any other minor alteration. Only upright humans can 

be spotted in W4 utilizing the cardboard design. It becomes problematic when people are in various positions, crawling and 

climbing. The detection of spatial irregularities that include U-turns in behavioral subtraction is difficult in this technique. 

The study can identify both temporal and spatial outliers when need to identify them. When foreground objects become 

visible during background activities, behavioral camouflage occurs. The Kalman Filter, Mean Shift Algorithm, and GMM all 

struggle to detect multiple objects with minor occlusions. Conventional object detection techniques cannot identify areas in 

images with numerous objects. Existing color detection algorithms can only detect primary colors accurately.  

Existing approaches detect colors incorrectly if the image contains other colors. Aside from that, some common 

difficulties are that if the background illumination changes, it could be misinterpreted as a front object. Some approaches also 

have difficulties in detecting shadows. The closeness in glimpses between foreground and background items can be 

problematic for camouflage. Another problem is non-static background modelling. In high-traffic locations, the background 

is frequently obscured by many foreground objects. Because of the constant shift, it makes it challenging to classify the 

permanent foreground and backdrop [26]. 

 

III. PROPOSED METHODOLOGY 

This work aims to create feature selection, and classification approaches to address existing issues with the detection of 

moving objects collected using event cameras. Low-range approximation techniques are utilised to extract the dynamic 

properties of the frames. To minimise battery usage, a freshly enhanced YOLOv3 is employed for feature selection. The 

suggested approach assesses the frame's entropy, lowering power usage.  

Additionally, to reduce the computational time consumption of the suggested enhanced YOLOv3, data set classification is 

accomplished by utilising YOLOv3 and MobileNet architecture. The ranking is accomplished through a comparative 

examination of live data sets. Fig 1 depicts the basic framework for identifying targets. 

MOT20 is a real-time video dataset acquired on this work, and it has been converted to tiny video frames. The suggested 

design and noise identification of several moving objects will be displayed in the discovered object's frame. A convolutional 

moving window Kalman filter is used to remove and smooth noise. The video frames will be processed and analyzed after 

denoising. Utilizing noisy measurements acquired over time, the Kalman filter estimates method parameters and predicts 

future observations. At every stage, it makes predictions, collects measurements, and subsequently updates based on the 

forecasts and comparisons. The mathematical estimator can predict and update the state of a wide range of linear processes. 

In the YOLOv3 network, the binary cross-entropy loss is utilized rather than multiple labels to classify for predicting the 

classes of bounding boxes to improve performance. 

 

 
 

Fig 1. Basic Block Diagram of Object Detection 

MobileNet 

The MobileNet model is the backbone of the object detection architecture in this work because it is small and complex. 

Regular convolutions are divided into depth and point convolutions in the MobileNet model. Depth convolution divides 
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traditional convolution into two distinct layers for merging and filtering. The point convolution then uses a 1x1 convolution 

to mix the outputs of the deep convolutions [27]. Table 1 show This factorization considerably reduces both the computation 

time and the size of the model. The calculation cost is computed utilizing the following operations: 

𝑑𝑘. 𝑑𝑘 . 𝑚. 𝑑𝑓 . 𝑑𝑓 + 𝑚. 𝑛. 𝑑𝑓 . 𝑑𝑓     (1) 

Where m and n are the numbers of input and output channels, dk denotes the convolution operation kernel size and df 

denotes the size of the feature map, respectively. The depthwise and pointwise convolution is followed by BN and ReLU 

blocks are shown in Fig 2. 

The computing cost for standard convolution, on the other hand, is: 

𝑑𝑘. 𝑑𝑘 . 𝑚. 𝑛. 𝑑𝑓 . 𝑑𝑓     (2) 

Combining (1) and (2) yields the following calculation reduction: 

 
𝑑𝑘.𝑑𝑘.𝑚.𝑑𝑓.𝑑𝑓+𝑚.𝑛.𝑑𝑓.𝑑𝑓

𝑑𝑘.𝑑𝑘.𝑚.𝑛.𝑑𝑓.𝑑𝑓
=  

1

𝑛
+  

1

𝑑𝑘
2     (3) 

 

Table 1. Mobilenet Model Layer Architecture 

 

Name Shape of the filter Size of the input 

Conv 3 x 3 x 3 x  32 416 x 416 x 3 

Conv dw 3 x 3 x 32 dw 208 x 208 x 32 

Conv 1 x 1 x 32 x 64 208 x 208 x 32 

Conv dw 3 x 3 x 64 dw 208 x 208 x 64 

Conv 1 x 1 x 64 x 128 104 x 104 x 64 

Conv dw 3 x 3 x 128 dw 104 x 104 x 128 

Conv 1 x 1 x 64 x 128 104 x 104 x 128 

Conv dw 3 x 3 x 128 dw 104 x 104 x 128 

Conv 1 x 1 x 128 x 256 52 x 52 x 128 

Conv dw 3 x 3 x 256 dw 52 x 52 x 256 

Conv 1 x 1 x 128 x 256 52 x 52 x 256 

Conv dw 3 x 3 x 256 dw 52 x 52 x 256 

Conv 1 x 1 x 256 x 512 26 x 26 x 256 

5 x Conv dw 3 x 3 x 512 dw 26 x 26 x 512 

Conv 1 x 1 x 512 x 512 26 x 26 x 512 

Conv dw 3 x 3 x 512 dw 26 x 26 x 512 

Conv 1 x 1 x 512 x 1024 13 x 13 x 512 

Conv dw 3 x 3 x 1024 dw 13 x 13 x 1024 

Conv 1 x 1 x 1024 x 512 13 x 13 x 1024 

Avg Pool Pool 7 x 7 13 x 13 x 1024 

FC 1024 x 1000 1 x 1 x 1024 

Softmax Classifier 1 x 1 x 1000 
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Fig 2. The depth-wise and point-wise convolution is followed by BN and ReLU blocks 

 

Enhanced You Only Look Once v3 (YOLOv3) 

In the conventional YOLOv3 framework, the Darknet-53 network serves as the basis of feature extraction. This network 

outperforms ResNet-152 and ResNet-101 in terms of power and efficiency. Nonetheless, Darknet-53 contains numerous 

layers, making it challenging to execute on mobile devices. Google's MobileNet framework [28] decomposes conventional 

convolutions into deep convolutions and 1x1 convolutions to minimize model size. It has been found that the MobileNet 

framework consumes 8-9 times less computing than existing convolutions, with a minor loss of precision. As a result, the 

MobileNet network rather than the Darknet-53 model serves as the basis of the YOLOv3 framework for object detection in 

this work. 

The YOLO network's convolutional layers are inextricably linked to the underlying Darknet technology. Furthermore, for 

a more cohesive grid, they can be replaced with their pointy equivalents. The suggested object detection technique is 

provided in this section. A new object detection system is created using YOLOv3 and MobileNet. Fig 3 depicts the suggested 

architecture. The suggested approach begins by rescaling image data from event based real time dataset. MobileNet is an 

essential feature extraction component in this approach due to its excellent accuracy and effectiveness. In contrast to the 

conventional YOLOv3 model's selection of fixed feature maps, this research reexamines how to determine the object 

detection feature maps using matching receptive field and object scale. The revised selection of feature map significantly 

improves the suggested object detection model's performance [29-30]. 

 

 
 

Fig 3. Proposed Method's Framework 



 

ISSN: 2788–7669                                                                                                Journal of Machine and Computing 3(3)(2023) 

288 
 

Algorithm 1 Proposed object Detection Algorithm 

Input : original image 

Output : image with rectangle indicators  

for 𝑖 ← 1 to the number of scales in the image pyramid   do 

       Downsample image to generate imagei 

       Calculate integral image, imageii 

       for 𝑗 ← 1 to number of  steps of sub-windows   do 

             for 𝑘 ← 1 to number of stages is cascade classifiers   do 

                   for 𝑙 ← 1 to number of filters of stage k   do 

                          Compile filter outputs 

                     end for 

                     if   compilation fails per-stage threshold   then  

                           Restrict the use of sub-window  

                           Break this k for loop 

                      end if 

               end for 

               if   all per-stage checks were passed by the sub-window   then 

                    Consider this sub-window an object. 

               end if 

        end for 

  end for 

 

 

IV. RESULTS AND DISCUSSION 

The simulation tool in the suggested strategy is MATLAB. MOT20 [31] is a real-time video dataset that can be used in this 

work. Fig 4 depicts the results of the proposed YOLOv3-MobileNet processing. Precision, Accuracy, True Positive Rate 

(TP), False Positive Rate (FP), Ground Truth (GT), Mean Absolute Position (MAP), and Detection Rate (DET) are the 

parameters for the analysis. 

 

 
 

Fig 4 . Result of the proposed model from the MOT 20-01 sequence of the real-time MOT 20 dataset. 

 

Accuracy Analysis 

The degree of agreement between an actual value and its noise evaluation is referred to as accuracy. Table 2 depicts an 

accuracy study of the proposed approach. 
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Table 2. Evaluation of Accuracy 

Number 

of images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 77 82 90 91 93 95 

200 81 85 92 93 95 97 

300 83 87 93 95 96 98 

400 85 91 95 96 97 98.5 

500 87 93 96 97 98 99 

 

On the X axis of Fig 5, multiple video frame sequences from the MOT 20 data sets are given, and the accuracy in 

percentage is assessed on the Y axis. This implies a maximum accuracy of 99%. The proposed model's accuracy estimations 

are validated against existing models using feature masking in video frames. The comparative study takes into account the 

MOT of ten items as well as the classification accuracy of the suggested model. 

 

 
 

Fig 5. Analysis of Accuracy  

Precision Analysis  

Precision is the degree to which reiterated noise measurements produce the same results under similar circumstances. Table 3 

depicts the precision analysis of the suggested technique. 

 

Table 3. Evaluation of Precision 

 

Number of 

images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 73 77 82 85 88 90 

200 75 78 86 87 89 93 

300 77 79 88 90 93 95 

400 79 80 89 92 94 96 

500 81 82 91 93 95 98 

 

On the X axis of Fig 6, multiple video frame sequences from the MOT 20 data sets are shown, while the precision in 

percentage is assessed on the Y axis. As a result, the proposed approach obtains the most excellent precision of 98%. The 

calculation of precision values reveals that the suggested model achieves precision levels that are superior to the state of the 

art. Existing technology provides accuracy rates of 95%, 93%, 91%, 82%, and 81% for SSD, RCNN, F-RCNN, YOLOv2, 

and YOLOv3, respectively. In the instance of the suggested model, the observed precision is 98%. Comparisons show that it 

outperforms traditional technologies. 
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Fig 6. Analysis of Precision 

Recall Analysis 

Recall refers to the proportion of relevant images obtained overall. Table 4 shows the suggested technique's recall analysis.  

 

Table 4. Evaluation Of Recall 

Number 

of images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 63 70 75 77 79 85 

200 65 71 77 79 81 87 

300 67 73 80 81 83 90 

400 68 75 82 83 85 93 

500 70 77 83 85 87 95 

 

Fig 7 shows multiple video frame sequences from the MOT 20 data set on the X-axis and recovery percentages on the Y-

axis. This proposed approach has a maximum recovery value of 95%. A comparison of the suggested method and the current 

state of the art reveals that the suggested approach outperforms conventional procedures. Model tracking and categorization 

outperform existing methods. 

 

 
 

Fig 7. Analysis of Precision 

TP Analysis  

The criteria needed for evaluating the performance of a tracker is defined as True Positive analysis. The first step is to 

determine whether each proposed output is a TP that corresponds to an actual goal. The TP of the proposed approach is 

evaluated in Table 5. 
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Table 5. Evaluation of TP 

Number 

of images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 53 55 59 61 64 78 

200 55 57 61 64 66 84 

300 57 61 65 66 68 88 

400 58 63 67 68 70 90 

500 61 64 68 70 72 95 

 

Fig 8 shows multiple video frame sequences from the MOT 20 data set on the X-axis and true positive on the Y-axis. The 

suggested approach yields the most excellent True Positive value of 95%. 

 
Fig 8. Analysis of TP 

FP Analysis 

The first step is determining whether each hypothesized output is an FP or false alarm. The study of false positives is shown 

in Table 6. FP can represent the number of images recognized or classified by a model per second in image classification and 

object detection applications. It can be utilized for estimating the model's average processing speed. The X-axis in Fig 9 

shows distinct video frame sequences from the MOT 20 dataset, while the Y-axis shows false positives. This proposed 

approach yields the most excellent false positive rate of 94%. The image field is defined by the FP value, which refers to the 

number of frames transmitted by the screen every second.  

 

Table 6. Evaluation of FP 

Number of 

images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 53 57 62 64 66 74 

200 55 60 65 67 70 80 

300 57 63 67 69 72 85 

400 60 65 71 73 75 93 

500 62 67 73 75 79 94 

 

 
Fig 9. Analysis of FP 
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Ground Truth Analysis 

The phrase "ground truth" implies the information collected in the field. Image data may be associated with real-world 

features and real-world material on the ground can be exploited. It is also helpful for atmospheric adjustment. Table 7 shows 

an investigation of the GT of the proposed method's actuality. On the X-axis of Fig 10, several video frame sequences from 

the MOT 20 dataset are shown, while the ground truth is considered on the Y-axis. The proposed work discovers the greater 

truth of this statement. 

Table 7. Evaluation of Ground Truth  

Number 

of images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 67 73 77 80 82 86 

200 69 77 79 82 84 88 

300 71 81 84 86 88 90 

400 73 83 86 87 89 94 

500 75 85 88 90 92 96 

 

 
Fig 10. Analysis of Ground Truth 

Detection Analysis 

This analysis solely considers pedestrians. People who are static and other groups are shielded from detection and ground 

truth. Table 8 displays the assay results. Fig 11 depicts several video frame sequences from the MOT 20 data set on the X-

axis and detections on the Y-axis. The proposed technique surpasses all others in terms of detection value. This proposed 

approach yields the most excellent detection rate of 93%. 

 

Table 8 Evaluation of Detection Rate 

 

Number 

of images 

SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 47 54 57 63 69 72 

200 51 57 59 65 72 82 

300 53 61 61 68 75 85 

400 55 63 64 72 77 88 

500 57 65 67 75 80 93 

 

 
Fig 11. Analysis of Detection Rate 
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MAP analysis 

The Position information containing coordinate details linked with a single image is called mean absolute position. The mean 

absolute position analysis in Fig 12 is shown in Table 9, where several video frame sequences from the MOT 20 data sets are 

shown on the X-axis, and the MAP is examined on the Y-axis. The most excellent mean absolute position score obtained was 

95%. A comparison of the suggested and state-of-the-art MAP scores reveals that the suggested approach outperforms the 

existing literature. 

Table 9. Evaluation of Mean Absolute Position  

 

Number of 

images 
SSD RCNN F-RCNN YOLOv2 YOLOv3 Proposed 

100 57 63 67 71 74 75 

200 61 65 73 75 77 79 

300 64 67 75 77 79 83 

400 67 70 77 81 83 87 

500 71 74 81 85 87 95 

 

 
 

Fig 12. Analysis of Mean Absolute Position 

 Quantitative Results 

 

Table 10. MAE and Computational Load Performance 

Algorithms 

MAE Computation time(s) 

Static Dynamic 
Static and 

dynamic 
Static Dynamic 

Static and 

dynamic 

SSD 0.37 0.39 0.35 78 76 70 

RCNN 0.25 0.27 0.21 72 69 55 

F-RCNN 0.18 0.20 0.16 50 47 40 

YOLOv2 0.08 0.09 0.04 45 35 28 

YOLOv3 0.07 0.08 0.04 30 28 22 

Proposed 0.05 0.06 0.02 25 22 18 

 

According to quantitative research, combining static and dynamic models can increase prominence detection 

performance. When merging static foreground networks with dynamic highlight networks, traditional approaches cannot 

recognize the relevance of video objects. The modelling approach is trained using static foreground data, which results in 

more accurate predictions than other methods. According to the above research, this work may assume that when training 

data drops, so performs, and vice versa. This implies that the suggested approach is data-driven. The computational load of 

the proposed technique and existing algorithms is compared in table 10.  
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Fig 13. MAE Proposed Models Over Existing Deep Learning Models 

 

 
Fig 14. Computational Proposed Models Over Existing Deep Learning Models 

 

It is clear that the suggested approach is faster than the other ways. This method has been found to reduce computation 

time and eliminate a significant bottleneck in the efficiency of execution. In most circumstances, motion or edge data 

computations impede video prominence. The outcomes are depicted in Fig 13-14. This encompasses both static and dynamic 

effects, as well as static and dynamic relationships between the suggested approaches and other conventional methods. In 

comparison to static or dynamic procedures and other similar methods, the suggested strategy utilizing static and dynamic 

procedures minimizes MAE and computing costs. Because computing time is minimized, fewer networks are offered to 

process incoming data.  

 

FPGA Performance 

The hardware configuration and functionality of a Xilinx Zynq-7020 FPGA at 100 MHz are directly compared to the 

outcomes of the algorithms. For testing, this work employs ISIM-integrated logic simulation software. After synthesis and 

deployment, the timing findings and latency requirements are initially analyzed to confirm that the behavior is met. 

 

Power Consumption 

Table 11 also contrasts the suggested system's energy consumption with the more advanced technique. The proposed event 

camera in this suggested system consumes a few watts (0.33 W), The algorithm performance alone contributes only 0.33 W 

of dynamic power to the device. 

 

Table 11. Power Consumption and Latency Of Existing Object Detection Systems Versus The Proposed Method. 

 

Algorithm Frequency(Mhz) Power(Watts) Latency(ns) 

Proposed 100 0.33 420 

YOLOv3 100 0.37 565 

YOLOv2 50 0.69 670 

FRCNN 58 0.82 720 

RCNN 50 0.98 760 

SSD 2600 1.0 815 
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The current study employs the hybrid computing capabilities of Xilinx Zynq devices. However, it is limited by the high 

latency of frame-based systems. The Zynq module is a strong and diverse development structure; however, it can employ 

sleep mode and non-volatile memory, and its efficiency is significantly higher than its usefulness, with a substantially lower 

overall power consumption than the Smart Fusion FPGA. In other words, with correct hardware selection and construction 

efforts, there are numerous possibilities for the framework's low power consumption (less than 1 W). The recovery 

comparison utilizing the proposed approach is shown in Fig 15. 

 

 
 

Fig 15 .Comparison Of Recall Of Proposed Algorithms 

 

V. CONCLUSION 

Traditional detection approaches cannot match the criteria for high-precision, real-time object recognition and classification 

in dynamic event cameras. This research creates an enhanced YOLOv3 network for thorough consideration. YOLOv3 and 

MobileNet were used to create a new object detection method. Initially, rather than picking fixed feature maps in the 

conventional YOLO v3 architecture, the technique for determining feature maps in the MobileNet is optimized based on 

examining the receptive fields. Experimental outcomes show that the suggested approach can identify and track foreground 

objects in complicated and vibrant environments with excellent precision, resilience, and efficacy. This approach also yields 

photos that are smooth and free of noise. Another advantage of this strategy is that it demands less computing time. The 

suggested method does not suffer from false object tracking even in the circumstance of varying lighting, making the system 

more efficient and resilient. Future work can be enhanced by experimenting with more video streams in congested areas. 
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