

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

178

A Capability Maturity Model for STP aware

Software Development

1Geim Sllian and 2Toi Mazur
1Center for Advanced Sttudies, European University Institute, Fiesole FI, Italy

1gsllianfie23@hotmail.com

Correspondence should be addressed to Geim Sllian : gsllianfie23@hotmail.com

Article Info

Journal of Machine and Computing (http://anapub.co.ke/journals/jmc/jmc.html)

Doi: https://doi.org/10.53759/7669/jmc202202022

Received 28 March 2022; Revised form 30 May 2022; Accepted 29 July 2022.

Available online 05 October 2022.

©2022 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract – There has been an increase in the importance of software Security, Trust, and Privacy (STP). Product systems

must be designed with trustworthy STP protection methods while still rendering the required benefits of applications to its

consumers. As a result of this large skill gap, colleges and the software sector have found themselves in a state of supply-

and-demand conflict. STP-aware software development requires a new practice Capability Maturity Model (CMM) to

address this issue. In order to help colleges progressively increase their students' capacity to apply what they have learned

in the classroom, this contribution provides a model that consists of 4 levels: Awareness, Curriculum, Project, and
Enterprise, for STP-aware software development. Software development that is STP-aware has been shown to be quite

beneficial in the development of programming talent's practice capabilities for learners.

Keywords – Security, Trust, and Privacy (STP), Capability Maturity Model (CMM), Team Software Process (TSP)

I. INTRODUCTION

Traditional methods of system security are scarcely sufficing to mitigate the Security, Trust, and Privacy (STP) [1] challenges

(such IDS and firewalls) today. These issues necessitate the development of STP-aware software applications. STPs are not

adequately addressed in current software development practices. STP-aware software development is hampered by this issue.

New technologies, such as blockchain, place additional demands on STP-aware software and apps. Because of the

widespread use of Internet-based systems, attackers have multiplied and threat scenarios have shifted. Pervasive application

software does not lend itself to traditional security measures. Pervasive applications necessitate a different approach when it
comes to privacy concerns than traditional software applications. Ad hoc network connections and disconnection are

commonplace among ubiquitous computing devices. This necessitates the development of new trust models for ubiquitous

computing applications.

Teams and individuals can use the Team Software Process (TSP) [2] established by the Software Engineering Institute

(SEI) to implement software development fundamentals. As compared to prevailing practices, software developed using the

TSP has a defect rate of zero to one abnormality per thousand lines of code—that is, a defect rate that is one or two orders

of magnitude lower. Secure Software Engineering (TSP-Secure) [3] is an extension of the TSP that focuses on software

application security specifically. This project is a collaboration between the SEI's TSP and CERT programs. Developing a

TSP-centric method that could dependability present secure software is the project's overarching goal. TSP-Secure takes a

three-pronged approach to ensuring secure software development. First and foremost, TSP-Secure emphasizes the

importance of planning for confidentiality. TSP-Secure also assists in the advancement of self-directed design groups and
then places these teams in control of their own work because schedule demands and people issues prevent the implementation

of best practices. TSP-Secure also aids in the management of quality all through the product development cycle because

confidentiality and quality are intertwined. Finally, TSP-Secure includes security perception training for designers because

people constructing secure applications must be aware of software security issues.

TSP-Secure allows teams to develop their own strategies. A project launch, a series of meetings lasting three to four

days, is used to kick off the planning process. A competent team coach is in charge of the launch. As part of a launch, the

TSP-Secure team comes together to agree on a typical set of security objectives and the approaches they will use to achieve

those goals, and they get management support for the plan. It is common for the plan to include tasks like identifying security

risks, gathering requirements for security, creating secure designs and code reviews, as well as employing static analytical

techniques, system testing, as well as fuzz testing. During black-box testing, fuzz testing is used to generate random inputs

for external program interfaces. The word is derived from the University of Wisconsin's fuzz testing program. Each member

http://creativecommons.org/licenses/by-nc-nd/4.0/

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

179

of the team within the TSP-secure group has an option to select from one out of nine standard obligations (duties could be

shared). The Security Manager position is one of the designated roles. All aspects of a product must be considered when it

comes to security; the Security Manager ensures that these aspects are addressed during product development. He or she

also provides timely assessment and disclaimer on security issues, and tracks any threats or issues to their resolution. An

external security expert may be called upon when necessary.
To make sure that all security-related tasks are carried out properly after the launch, the team follows through on its

strategy and puts it into action. Every management status briefing includes a discussion of security. Learners could visit web

sites like Microsoft Security Software Consulting [4], US-CERT Technological Cyber Security Notification center site [5],

MITRE Common Vulnerabilities and Exposures (CVEs) [6], and the SANS Institute's Top twenty list of security

vulnerabilities site [7] to learn about the most popular software defects that lead to security flaws. TSP-quality Secure's

strategic plan is to have numerous fault retrieval points during the software development process. With a greater number of

defect removal points, it is easier to discover issues right away, allowing for faster problem-solving and a better

understanding of the underlying causes.

Application products launched with lesser defects that might lead to threats have more defect discharge filters built into

the development process. When defects are spotted earlier, reparative action can be taken before the software is even

released. It was suggested in this study that a new model of practice capacity maturation for software engineering that takes

STP into consideration may be developed. In order to help colleges progressively increase their students' capacity to apply
what they've learned in the classroom, this model is based on 4 levels: Awareness, Curriculum, Project, and Enterprise. This

paper provides a critical analysis of the model, which major focus on the four levels. The remaining sections of the paper

has been organized as follows: Section II presents a background evaluation of the research. Section III discusses the ideas

on the enhancement of practice capability. Section IV focusses on CMM review for STP-aware software development.

Section V reviews the implementation of the STP-aware software development, which Section VI discusses the importance

of teaching STP-aware software development. Lastly, Section VII draws conclusion to the whole paper.

II. BACKGROUND ANALYSIS

In recent years, international rivalry in the software business has grown, rendering it a strategic priority for many nations.

The existence of a team of extremely qualified, complex, engineering-type professionals is the most crucial assurance for

the long-term success of the software sector. A result of this is a focus on theory rather than practice in China's conventional
educational techniques. Academia and industry face a significant supply-and-demand conflict due to the inability of graduate

students to meet industrial needs. Many graduates are having problems finding work, while some software businesses have

difficulty finding skilled personnel, even if they can afford to offer a respectable compensation. Accordingly, we undertook

some study and inquiry into the training techniques utilized in nations with well-developed software businesses, such as

India and Ireland. There is a great focus in these nations on the effect of practicing. The outcome is that the private sector is

encouraged to engage with universities to guarantee that students have the skills and knowledge required to succeed in the

job. If you want to be regarded a competent software developer, you need to have the following four qualities: basic

theoretical skills, specialist knowledge, and expert skillset and carrier capability (see Fig. 1). Interpersonal skills, drive, and

a strong work ethic are all part of this skill set, as are communication talents. The curriculum and practice systems are

supposed to work together to create all of these characteristics.

Fig 1. Expected qualities of a typical software development employee

CSDA Training Platform and Guidebook to the Software Body of Knowledge (SWEBOK) from Software Engineering

Education Knowledge (SEEK) [8] and IEEE from ACM have both been brought to China as worldwide standard information

systems for curriculum design and development. Every one of these worldwide standard information systems has a structured
categorization of fundamental concepts and specialised information for many specialties. There is a difficulty in defining the

maturity degree of professional training and career capacity in these fields of study, or improving the practice abilities of

Specialist knowledge
Basic theoretical

skills

Curriculum Framework

Expert skillset Carrier Capability

Practice Framework

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

180

learners, including in software engineering, through these curriculum structures. International application learning modes,

coupled with our school's expertise and sentiments, have contributed to the growth of a practice maturity model for STP-

aware software design that can be utilised to guide training in proficient training and career capacity. The model is divided

into four stages of maturity: awareness, curriculum, project, and enterprise.

III. IDEAS OF IMPROVING PRACTICE CAPABILITY

For learners of software development, exercise and curricula are crucial components of a capability-building system, thus

we should follow these notions while designing training programs for the subject. Training system applied in the field of

Software Development at various universities. Both the syllabus and the exercise systems are intertwined according to

semesters in the education program. CSDA (Certified Software Development Associate) [9] is used as a benchmark in

Pedagogy System's knowledge base (see Fig. 2). STP-aware software engineering uses a practice maturation hierarchy that

is quite close to the Capability Maturity Model (CMM).

Fig 2. Cultivation framework employed in SSE

Following these guidelines will help us enhance students' practicing skills more effectively: (i) There will be a variety of

material and objectives for each stage of STP-aware Software Engineering. (ii) Throughout the entire practice procedure, a
standardized enterprise-like workflow is closely followed. (iii) Modern software development and project management

practices are used in conjunction with cutting-edge development tools and technologies. (iv) As shown in Table I, the basic

concepts of various practice activities are presented by stage.

IV. CMM – STP-AWARE SOFTWARE DEVELOPMENT

The phrase "STP-aware software development" refers to the process of transitioning from a novice to an expert. IT-related

training programs, such software engineering, may find it useful in assessing students' practice ability. It's a fully-fledged

replica.

The Development of STP-aware Software

Each time a pupil completes a practice task, their ability to practice improves more. Evolutionary paths to develop practicing
skills follow maturity stages, which are well-recognized. If all of the primary process areas for a level are satisfied, the

maturity level will rise to the next level.

CMMs may be used to compare the mature practices of different engineering disciplines. Using the model, an

organization's current procedures can be evaluated and potential improvement areas can be suggested. The CMMs specify

certain processes (software engineering, systems engineering, and security engineering) at a high level, however they do not

give practical recommendations. They describe rather than define procedures; in other words, they explain what rather than

how they accomplish things." Product or system certifications are not intended to be replaced by CMM-based evaluations."

When it comes to assessing an organization's processes, however, organizational evaluations try to target just those areas

that have been recognized as needing improvement.

1. Basic programs in

the overall education

2. Basic programs in

disciple

3. Cores of Programs of

specialty

4. Specialty-centric

courses

1.Awareness-centric

practices

2.Curriculum-centric

practices

3.Project centric

practices

4.Enterprise centric

practices

Curriculum

Framework
Practice

Framework

1. Computational foundation

2. Mathematics foundation

3. Software development

economics

4. Software development

5. Professional practice

6. Software quality

7. Software development

approaches

8. Software development process

9. Software development

management

10. Software configuration control

11. Software maintainability

12. Software testing

13. Software construction

14. Software design

15. Software requirement

Content domains

within CSDA

Level 1: Awareness

CMM-STP-aware

development

levels

Level 2: Curriculum

Level 3: Project

Level 4: Enterprise

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

181

Process maturity has typically been the focus of CMMs in order to achieve business goals such as better scheduling and

quality management, as well as a reduction in the total defect rate in software, among other things. In terms of institutional

and project operating procedures and verification methods, CMMs addresses two of the four main areas of concentration for

a safe SDLC process. Insufficient attention is paid to security engineering and risk management It's not only the quantity of

vulnerabilities that they're concerned with decreasing. In many cases, faults that aren't security-related don't cause security
issues. One example of a security flaw that isn't the result of a software error is malicious code.

Table 1. Organization ideas for practice activities

Level of Maturity Major Points within the

Curriculum Model

Organization Ideas for Practice

Activities

Awareness Develop the model-level cognition of

computing systems and data

technology; training a number of basis

knowledge for software engineering.

The correlated programs integrate:

College computing basics and the C

programming language.

To conduct a number of major

concepts of computing system. Within

the programming concept, beginning

to employ the latent framework and

platforms, based on the mean

timeframe, training the fundamental

skills.

Curriculum Learn the vital knowledge scheme

concerning software development,

which integrates data algorithm and
structure analysis; principles of

operating frameworks, and personal

software procedures.

Developing the understanding

concerning the foundational programs.

Getting to identify and understand
software engineering architectures and

undergoing the software development

cycle via practices and projects

centered on the program projects.

Project Training to employ technologies and

theories of software engineering and

software development to a particular

form of application

Being acquainted with the information

of the team’s software procedure;

naturing the capability of cooperation,

innovation and communications.

Enterprise Tracing more advanced skillset and

the latest developments in the software

development sector.

Undergoing the actual developing

procedure of industry; accumulating

knowledge or experiences of project

management as well as utilizing front

technologies.

Capability Maturity Model Integration (CMMI) may improve long-term business success for organizations. CMMI for

Acquisition (CMMI-ACQ) and CMMI for Direct Contracting (CMMI-DC) are three unique configurations of the CMMI

for Development (CMMI-DEV). Over 1,100 companies and 4,771 projects have been evaluated by the Software Engineering

Institute since December 2005 [10]. Version 1.3 of the Capability Mature Model was released in each of its three

constellations in November of that year. CMM offers a structure for acquisition groups to follow when acquiring products

and services. In the process of providing, managing, and managing services, the CMMI for Services (CMMI-SVC) may be

a beneficial tool.

Product and service creation, upkeep, and acquisition may all benefit from CMMI-best DEV practices, which include

strategies to assist firms in improving their operations and criteria to measure process capacity and maturity. Software and

systems integration, combined process and product design, and supplier acquisitions are all encompassed under this

paradigm. CMM-DEV, which has been around for a long time and is well accepted, has replaced the CMM for software
development. Since the mid-1980s, the CMM has been in use. The CMMI-DEV may be used to categorize process

improvement and evaluation into four main categories.

In each category, there are a number of Processes that are included. Modeling and developing project management,

supply chain management, quality assurance and measurement, as well as engineering methodologies, are all included in the

CMMI-DEV (see Fig. 3). Risk management and engineering, and project and organizational security protocols are not

specifically covered in this publication. Researchers continue to define new objectives and processes to assist assure the

system's robustness even though the CMMI-DEV has already addressed many of these problems. The "Process and Practice

Working Group" page may be found on the Software Assurance Society Tools and Data Clearinghouse website [11]. The

SEI website has further information about the CMMI.

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

182

Fig 3. CMMI-DEV Process Areas

The Four Levels of STP-aware Software Enginneering

Fig. 4 depicts the main process areas at various stages of maturity, with a distinct set of Key Process Areas (KPAs) at every
stage. The KPAs are a list of the most important criteria that must be met in order to reach a certain degree of maturity.

Fig 4. Vital process domains by the maturity level

Level 1 – Awareness Level
At Awareness Level, we presume that new students have no prior knowledge of software development or computer systems.

Attending lessons in this level will help students get a basic understanding of their field. An overview of computer science

Capability Maturity
Model Integration

(CMMI)

Support

Causal resolution and
analysis

Decision resolution
and analysis

Organizational
ecosystem for an

integration

Product and prcess
quality assurance

Configuration control

Engineering

Validation

Verification

Product integration

Technical solution

Requirement
management

Requirement
development

Project Management

Quantitative project
control

Integrated supplier
control

Integrated teaming

Risks control

Integrated project
control

Supplier agreement
control

Project control and
monitoring

Project planning

Process Management

Organizational
deployment and

innovation

Organizational
process performance

Organziation learning

Organizational
process definitions

Organizational
process

concentration

Level 1: Awareness

Level 2: Curriculum

Level 3: Project

Level 4: Enterprise

Mastery of more advanced programming

languages and industrial contact

Application of the present solutions;

practices of core curriculum

Recommendations and application of

solutions; and role play in development

Work ethics learning; control of enterprise

level developments; and domain problem

contact

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

183

and an introduction to information technology are among the common courses.... A high-level programming language, such

as Java or JavaScript, will also be taught to pupils. Generally speaking, students at practice capacity Level 1 lack a profound

understanding of the software system and industry. Preliminary programming and computer system familiarization are the

emphasis of this level of practice. The following are the most important process areas for the first level:

Expertise in Complex Programming Languages

The goal of this KPA is to teach students the fundamentals of computer programming while also giving them the skills to

tackle basic programming challenges with the help of a more sophisticated programming language.

Business Relationships

With this KPA, students will have a better grasp of the software business and a fundamental concept of how software

engineering may be used.

Level 2 – Curriculum Level

By the time students reach Curriculum Level, they have already learned the foundations of software engineering and are

ready to go on to more advanced courses. Software Engineering, Information Structures and Algorithm Evaluation, Personal

Process Stream, etc. are among the common courses. As a result, students' specialized knowledge and programming skills
will significantly increase. Students at Level 2 will see a significant improvement in their ability to practice. There are thus

both exercises in classes and the implementation of preexisting solutions to problems in a specific area, such as finance or

gaming. As a result, students will have a basic understanding of project management concepts. Below are the main areas of

focus for level 2:

Core Curriculum Application

Use this KPA as a teaching tool to help students learn how to go through programming exercises more effectively.

Use of Already-Developed Solutions

We want to show students how they can apply theoretical knowledge and programming expertise to put existing systems

into practice.

Level 3 – Project Level

Scholars should have a good academic and practical basis by the time they reach Project Level. They will study core subjects

in their field at this level, such as "Requirement Analysis," "Program Test," and "System Software in Practice," among

others. For the first time, the practice material of this level is not restricted to a single area of expertise. Students begin

working on projects of a smaller and more manageable scale. Teamwork, role-playing, and other aspects of the software

development process will be covered. The vital process domains for level 3 are provided below:

Proposals and Application of Solution

This KPA's goal is to teach students how to study and analyze issues in a specific area, and then devise and execute their

own solutions.

Roles in Development Process

 These students will be guided through various responsibilities in a design team, and they will be encouraged to strengthen

their communications and teamwork skills.

Level 4 – Enterprise Level

Students are prepared to operate as software developers at the Enterprise Level. At this level, students are mostly exposed

to specialized courses, such as lectures on expert knowledge and the most recent developments in industry. This level's

practice material focuses mostly on teaching students how to enhance their professional prospects. Students will participate

in a variety of roles in a real-world software development environment and attempt to suggest and execute ideas that are

relevant to the industry at large. Listed below are some of the most important things to focus on in level 4.

Domain Problems Contact

It is the goal of this KPA to assist students in conducting in-depth investigations and study into industrial challenges in order

to develop solutions that can subsequently be put into action after they have been developed.

Enterprise Level Management and Development

KPA's goal is to provide students a first-hand look at what it's like to manage software engineering in a real-world software

company.

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

184

Training on Work Ethics

It is the goal of this KPA to instill in the pupils a strong sense of responsibility. When the learners begin to work, they will

be committed to the enterprise's goals and the welfare of their coworkers.

Model Analysis
Table 2 shows the aims and aspects of STP-aware software development, which we shall examine further after a quick

introduction to the four phases of STP-aware development.

Table 2, Aims and aspects of STP-aware software development

 Awareness Curriculum Project Enterprise

Practice objectives Freshmen years;

gaining accessibility

to the software sector;

and stimulating the

interests in software

development.

Sophomore years;

training them the

ideologies of software

development cycle as

well as vital skillset of

developmental life

cycle.

Junior years; make

scholars comprehend

team development

processes, e.g., role

plays and

cooperation.

Senior years; learning

the capability of

learners to role play

considering the

development of

enterprise level

projects and

proposals and

implementations of
industry-centric

solutions.

Practice elements Preliminary

programming

practice; initial

contacts with various

applications in the

industry; engaged in

small-size projects

with minimal control;

time-consuming

about two to three
weeks.

Course centric

application practices;

related to the small-

sized issues in a

particular domain;

engaged in simple

project control

framework; time-

consuming three to

five weeks.

Practice objectives

acting within the

industry; concerned

on the issues with

special roles in

industries; engaged in

more complex project

control; time-

consuming about six

weeks.

Practice work

internships and

placements in

software sector;

concerning on issues

with multiple

objectives within the

industry; engaged

with more complex

project control; time
consuming about two

months.

Vital Process

domains

Mastery of more

advancement

programming

languages; industrial

contacts.

Practice of the core

curriculum;

application of

prevailing

resolutions.

Proposals and

application of

resolutions; role

acting in engineering.

Domain problems

contact; work ethics

education; control of

enterprise level

developments.

Curriculum

objectives

Construct primary

cognition of

computer sciences

and learning basic

concepts of software

engineering

Learning vital

information of

application growth

and having an access

to the theories of

application
development.

Deploying training

information and

technologies to

software engineering.

Learning advanced

knowledge and

tracking the latest

trend of industries.

Representation

forms

Row 6's "Representation Forms" in Table 2 demonstrates how practice systems influence the application of fundamental

ideas and specialized knowledge. Student knowledge at the Awareness Level has a poor correlation, indicating a dispersed

pattern. Students may apply what they have learned in their fundamental courses to more sophisticated challenges at the

curriculum level, where the information they've acquired shows a consistent pattern. At the Project Level, students are able

to build small and medium-sized initiatives by flexibly applying their knowledge of a given topic. Enterprise Level students

begin to apply their knowledge and skills to industry-related issues, and they will participate in enterprise-level projects

employing contemporary evolving technologies and equipment supported by specialized corporate culture.

V. IMPLEMENTATION OF STP-AWARE SOFTWARE DEVELOPMENT

Training in SSE's software engineering discipline has been based on grading in STP-aware development for some years
now. STP-aware development is implemented using a variety of diversity training methods, such as using industry-oriented

projects or project cases, utilizing the latest development tools and technologies, and occasionally having industry guest

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

185

lecturers give speeches. These relationships with renowned software companies allow for this variety of diversity training

methods to be used during implementation.

Awareness Level

Practice at Awareness Level is mostly geared at preliminary programming. It is possible to organise this period in a
centralized, distributed, or decentralized manner. A two-week, three-week and three-week duration is available for each

type. There are six unique steps of implementing standard awareness, each with its own characteristics, which allows us to

break down the process into manageable chunks. These phases include starting, project initiation, implementation, and

testing. Because the breadth of practice activities is so limited, students need to be given a detailed description of the project's

needs and system design.

Curriculum Level

About a month's duration of Curriculum Level practice training is required, and the implementation phase may be structured

in any of three ways: centrally, dispersed, or decentralized. The period might range from 3 weeks to 5 weeks depending on

the style selected. We divided the standardized procedure into eight steps based on the characteristics of this level and

Personal Software Process 3: beginning, starting a project, planning a project, designing and executing the systems, testing,

approving the result, and concluding. Students will be provided a detailed summary of the project's requirements at the
outset. For this reason, students only need to focus on high-level designs in project design, and not on outline designs, due

to the small size and intricacy of the practice exercises.

Project Level

There are nine phases of Project Level practice training, which lasts roughly six weeks and is broken down into the following:

opening, program start, project plan. We advocate a combination of centralized and dispersed training methods at this level.

Enterprise Level

Enterprise-level training takes around two months to complete and is broken down into nine stages: beginning, starting the

project, planning the project, analyzing the requirements, designing the system, implementing the system, testing it, and

finally accepting the project. The training program should be centrally coordinated at this level. Initiatives at this level will
take done at a practice facility, a unique location made possible by school-business partnerships. Tutors from a variety of

different software businesses serve as coaches for the various practice teams.

VI. SIGNIFICANCE OF TEACHING – STP-AWARE SOFTWARE DEVELOPMENT

Understanding Secure Development Life Cycle

SDL (Secure Development Life Cycle) is a technique of incorporating security considerations into the normal Software

Development Lifecycle (see Fig. 5) utilized in many firms building software and systems. Agile, Scrum, and Waterfall are

just a few of the methods in which SDL processes have been used by numerous developers. There are several additional

methods of development, such as spiral, fast software engineering, agile development approach, test-driven advancement,

and others. In terms of critical stages, these models are frequently comparable, such as: 1) planning, 2) development, 3)

certification, 4) implementation, 5) administration, and 6) end-of-life stage 6.

Fig 5. Software Development Life Cycle (SDLC)

Developers tend to focus on security considerations during the testing phase of the software development process, when they

uncover faults and gaps in the system. One of the worst practices when it comes to security is evaluating the security of

Requirement
evaluation

Designing

Implementations Testing

Evolution

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

186

software that was not designed to be secure in the first place, which is one of the worst practices. Instead, resources would

be spent testing and strengthening security rather than deploying the software on time. When it comes to implementing

security in SDLC, the notion of Secure SDLC is becoming more and more commonplace. When developing software,

security-related elements should be considered as much as feasible throughout the whole process.

According to [12], the phases of the Software Development Life Cycle (SDLC) do not accurately represent the rules and
procedures that must be applied at every management level. This condition might lead to embedded risks and weaknesses in

the system. When it comes to this situation, the Secure Development Lifecycle (SDL) can be integrated into an organization's

software development process. System Development Lifecycle (SDL) advocates the notion of incorporating security

measures into all stages of the development process. To meet the needs of the customer, most software developers write

code without thinking about the security risks and vulnerabilities that could be present in their work. The only way to prevent

malicious behaviors like denial of service and data leaking is to include security safeguards in the SDLC.

For example, security may be measured at each stage of the SDLC. Sahraoui [13] shows that every stage of SDLC should

provide functionality as well as a high level of quality and security. The software developer's goal is to supply all of the

features as quickly as possible. It may take more time, money, and resources to fix a security vulnerability-caused casualty.

For a safe application, you must include security measures into your software development lifecycle. A longer development

period is required, and there is no assurance that the final product will be impenetrable from an assault. However, using the

approach reduces the likelihood of an attack occurring. A high-quality, safe piece of software is the ultimate result. So, the
company's reputation in the eyes of the public and its peers will rise.

Risk management is a security step that must be taken at the beginning of the requirements gathering process. Determine,

access and limit the danger that arises from the functions and processes. Static analysis checks the system code for

appropriate coding convention and compliance with industry standards. FindBugs, developed by Huang, Shao, Fan, Yu,

Yang and Zhou [14], is a well-known Java static analysis tool. Security testing and code review follow static analysis as an

additional step. Authentication, authorisation, access control, validation of data, error detection, logging, and encryption are

the eight components of a secure code review.

Assuring a secure setup and conducting a security evaluation complete the process. Security methods may be

implemented or updated to counter the threats and vulnerabilities discovered during the analysis phase. For example,

encryption techniques and protocols, authentication methods, user rules, and legislation are all examples of security

mechanisms. The human user is the primary source of system vulnerability. Controlling and regulating user behavior might
be accomplished by user security policy.

Understanding Software Security Weaknesses

Throughout the software development process, developers must be able to discover all of their security flaws. For a deeper

comprehension, Perlmutter and Frankel [15] compiled a large number of terms from various literature studies on software

security. One of the terms used is Asset, which refers to products or assets that are critical to the firm and must be protected.

The assets are stated to be the primary and primary goals of a threat or assault, and if such are disclosed, it might suffer major

repercussions. The program must be able to protect against hacker assaults or ensure that it does not rely too much on data

kept outside of the asset's boundaries.

A software vulnerability is a flaw in the security system's implementation that might lead to the program's detriment. It

is a design defect or a loophole in the system itself. Software vulnerabilities may be classified into two types: design flaws

and observable bugs in the code. Design flaws are the root cause of most vulnerabilities, although implementation bugs can
also lead to vulnerabilities. Although the attacker has located the weakness, the assets have not been compromised, hence

this poses a danger to the system. The flaw in the security program itself is another weakness that might be compared to a

vulnerability. This may be due to a design error in the software's security features. While vulnerabilities may be patched and

redesigned, this defect cannot and has to be completely redone from the ground up. Defects should be discovered as soon as

feasible so that they may be addressed and remedied throughout the improvement process.

Understanding Problems in Secure Coding Practices

While developing software, one must make sure that all of the software development's inner workings are secure and ready

before beginning the real development process. Security has been an issue in many situations since it was not taken into

account during the design process. The issue of safety is often on people's minds, but they don't take it seriously enough.

There are a number of possible reasons why secure coding principles are being flouted. One of the most prominent causes
of poor security procedures is a lack of coordination between development teams. It's not uncommon for a team to have a

misconception about how the software will be produced in the workplace, no matter what industry they operate in (for

example). Moreover, as remote working becomes more prevalent across the globe, the majority of respondents said that

working in a team is preferable than working alone.

In this case, it is critical that engineers and other stakeholders communicate openly and clearly to ensure everyone is on

the same page. Another issue is the absence of testing of software. In the Secure Software Development Life Cycle, improper

development scheduling techniques may be to blame for this. When the program is deployed, there will be additional zero-

day attacks because of the absence of testing. Due to time and effort limits, it may be difficult to find and fix bugs. When

testing is necessary, it should be done in a collaborative manner rather than by a single person just for the purpose of speed

ISSN: 2788 –7669 Journal of Machine and Computing 2(4)(2022)

187

or haste to achieve a deadline. Many scholars e.g., those in [15] have conducted surveys and evaluations on this issue, which

may be useful for comparing security measures from the recent past and the present.

VII. CONCLUSION

A curriculum for Security, Trust, and Privacy (STP-aware) software development has been used for years in the Schools of
Software Engineering (SEE) field of software engineering to increase student practice capabilities. Two benefits of STP-

aware software development should be noted. On the other hand, the pupils had received a number of high-profile awards.

To progressively increase students' practice abilities, this research presents a revolutionary software talent practice for STP-

aware software development. This training may be used as a standard to manage, implement, or lead the practice process of

students in software engineering training. It may also be applied to the practice of a wide range of other disciplines. Years

of STP-aware software development in the Software Engineering Discipline of SSE have proved that it is very important for

the training of students' practical capabilities in the field of engineering. In the software sector, STP-aware software

development improves the skills of software developers.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author(s) declare(s) that they have no conflicts of interest

References
[1]. B. McMillin and T. Roth, "Cyber-Physical Security and Privacy in the Electric Smart Grid", Synthesis Lectures on Information Security, Privacy,

and Trust, vol. 9, no. 2, pp. 1-64, 2017. Doi : 10.2200/s00784ed1v01y201706spt021.

[2]. G. Coleman, "Organizing the rable - Introduction to the Team Software Process[Book Review]", IEEE Software, vol. 17, no. 6, pp. 109-110,

2000. Doi : 10.1109/ms.2000.895179.

[3]. D. Kaur, P. Kaur and H. Singh, "Secure Spiral: A Secure Software Development Model", Journal of Software Engineering, vol. 6, no. 1, pp. 10-

15, 2011. Doi : 10.3923/jse.2012.10.15.

[4]. "Security Consulting Services", Microsoft.com, 2022. [Online]. Doi : https://www.microsoft.com/en-us/securityengineering/sdl/consulting.

[Accessed: 15- May- 2022].

[5]. "Homepage | CISA", Cisa.gov, 2022. [Online]. Doi : https://www.cisa.gov/uscert/. [Accessed: 15- May- 2022].

[6]. "CVE -CVE", Cve.mitre.org, 2022. [Online]. Doi : https://cve.mitre.org/. [Accessed: 15- May- 2022].

[7]. M. Haase, R. Auger and K. Wyk, "Top 25 Software Errors | SANS Institute", Sans.org, 2022. [Online]. Doi : https://www.sans.org/top25-

software-errors/. [Accessed: 15- May- 2022].

[8]. L. Druffel and R. Little, "Software engineering for AI based software products", Data & Knowledge Engineering, vol. 5, no. 2, pp. 93-103,

1990. Doi : 10.1016/0169-023x(90)90006-y.

[9]. "Certified Software Development Associate Certification", IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 10, pp. 1546-

1546, 2010. Doi : 10.1109/tpds.2010.147.

[10]. "INCOSE Position on Capability Models and the Capability Maturity Model Integration (CMMI) Effort", INSIGHT, vol. 2, no. 2, pp. 19-20,

1999. Doi : 10.1002/inst.19992219.

[11]. S. Shang and S. Lin, "Understanding the effectiveness of Capability Maturity Model Integration by examining the knowledge management of

software development processes", Total Quality Management & Business Excellence, vol. 20, no. 5, pp. 509-521, 2009.

Doi : 10.1080/14783360902863671.

[12]. G. Nedeltcheva, "Quality Measurement in the Software Development Life-Cycle by Statistical Metrics – A Survey", Lecture Notes on Software

Engineering, vol. 3, no. 2, pp. 145-151, 2015. Doi : 10.7763/lnse.2015.v3.180.

[13]. A. Sahraoui, "The rationale paradigm in system development lifecycle", International Journal of System of Systems Engineering, vol. 4, no. 1,

p. 44, 2013. Doi : 10.1504/ijsse.2013.053479.

[14]. Z. Huang, Z. Shao, G. Fan, H. Yu, K. Yang and Z. Zhou, "HBSniff: A static analysis tool for Java Hibernate object-relational mapping code

smell detection", Science of Computer Programming, vol. 217, p. 102778, 2022. Doi : 10.1016/j.scico.2022.102778.

[15]. A. Perlmutter and B. Frankel, "SECURITY STUDIES and Security Studies", Security Studies, vol. 1, no. 1, p. iv-iv, 1991.

Doi : 10.1080/09636419109347452.

	1Center for Advanced Sttudies, European University Institute, Fiesole FI, Italy
	I. INTRODUCTION
	II. BACKGROUND ANALYSIS
	III. IDEAS OF IMPROVING PRACTICE CAPABILITY
	IV. CMM – STP-AWARE SOFTWARE DEVELOPMENT
	The Development of STP-aware Software
	The Four Levels of STP-aware Software Enginneering
	Level 1 – Awareness Level
	Expertise in Complex Programming Languages
	Business Relationships

	Level 2 – Curriculum Level
	Core Curriculum Application
	Use of Already-Developed Solutions

	Level 3 – Project Level
	Proposals and Application of Solution
	Roles in Development Process

	Level 4 – Enterprise Level
	Domain Problems Contact
	Enterprise Level Management and Development
	Training on Work Ethics

	Model Analysis

	V. IMPLEMENTATION OF STP-AWARE SOFTWARE DEVELOPMENT
	Awareness Level
	Curriculum Level
	Project Level
	Enterprise Level

	VI. SIGNIFICANCE OF TEACHING – STP-AWARE SOFTWARE DEVELOPMENT
	Understanding Secure Development Life Cycle
	Understanding Software Security Weaknesses
	Understanding Problems in Secure Coding Practices

	VII. CONCLUSION

