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Abstract – Data collecting, caching, analysis, and processing in close proximity to where the data is collected is referred 

to as "edge intelligence," a group of linked devices and systems. Edge Intelligence aims to improve data processing quality 

and speed while also safeguarding the data's privacy and security. This area of study, which dates just from 2011, has 

shown tremendous development in the last five years, despite its relative youth. This paper provides a survey of the 

architectures of edge intelligence (Data Placement-Based Architectures to Reduce Latency; 2) Orchestration-Based ECAs-

IoT. 3) Big Data Analysis-Based Architectures; and 4) Security-Based Architectures) as well as the challenges and 

solutions for innovative architectures in edge intelligence.  
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I. INTRODUCTION 

Due to recent advancements in Artificial Intelligence (AI) technology, the number of AI-based applications and services is 

rapidly increasing. Using AI, it is now feasible to achieve cutting-edge performances in a broad variety of fields, including 
facial recognition software, natural linguistic processing, machine learning, traffic prediction and anomaly-based. Some deep 

learning methods are still not enabled by current end devices, despite their increasing capabilities. Many cloud-based 

programs, such as Siri, Cortana, and Googling Now, become inoperable if the connection goes down. In today's smart 

applications, centralized information handling is also a popular feature. A solitary cloud-based information center is required 

for this. The amount of data generated by billions of phone users and IoT devices spread at the edge networks is immense, 

but it's not all that valuable.  

Cisco expects that by 2021, data generated by mobile customers and IoT devices would total 850 ZB. It is impossible to 

upload such a big volume of information to the cloud at current speeds without causing unacceptable delays for end users. 

Consumers' worries over their personal data have grown in recent years, though. The European Union verified GDPR 

(General Data Protection Regulation) to safeguard the users’ data. Mobile users who have the capacity to save their data on 

a cloud system run the risk of privacy leakage, or the unauthorized extraction of such data by hackers or companies using 

cloud-based intelligent apps. 
Edge computing, an expansion of cloud computing, has evolved as a means of bringing web services closer to the user. 

Edge computing alludes to the virtual computing model, which has the capability to deliver storage, networking and process 

capabilities at the networking edge. Devices like mobile base stations and vehicles, as well as various IoT gateways, routers 

and mini data centers are all examples of edge servers, which live up to their name by providing services to end devices. An 

"edge device" is a piece of hardware that makes service requests to an edge server. This might include anything from mobile 

phones to Internet of Things (IoT) hardware and embedded systems.  

There are three main advantages of the edge technology concept that may be summarized as follows. Due to ultra-low 

frequency calculations taking place near to the source data, data transmission times are considerably decreased. Edge servers 

provide near-instantaneous response times to end devices. End devices' energy consumption might be reduced if 

computational tasks are offloaded to edge servers. Consequently, battery life on end devices will be improved. In case there 

are scarce resources on the edge servers or devices, cloud computing might still be scaled. As such the cloud services would 
be put to work. End devices with existing assets may also collaborate on a project with one another. The edge computing 

model is capable of handling a broad variety of application scenarios due to its versatility. 

AI-based applications face a number of challenges that may be addressed by merging edge computing with AI. 

Intelligence in the "edge," "mobile," or "edge-to-edge" contexts is being discussed. Data collecting, caching, processing, and 
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analysis near to the data source are all examples of "edge intelligence," which is a network of linked devices and systems 

that increase data quality and speed while simultaneously protecting the safety and confidentiality of that data. In this data. 

Like cloud-based intelligence, Edge Intelligence analyzes data locally, protecting users' privacy, reducing response time and 

saving bandwidth resources. User data may also be used to build customized machine learning and deep learning models. 

A key component of the 6G system is likely to include edge intelligence. AI has the potential to aid with edge computing 

as well, which should not be overlooked. In this paradigm, "intelligent edge" is used instead of edge intelligence. Unlike 

intelligent edge, edge intelligence concentrates on building intelligent programs in the contexts of edge devices and 

safeguarding the privacy of its users, rather than solving edge computing difficulties with AI solutions. Rather than focusing 

on the cognitive advantage, we will ignore it for the time being. This paper subdivides the human-created architectures into 

further classes: 1) Data Placement-Based Architectures to minimize Latency; 2) Orchestration-Based ECAs-IoT. 3) Big-
Data-Analysis-Based Architectures; and 4) Security-Based Architectures. The rest of the paper is organized as follows: 

Section II presents a review of the previous works. Section III provides a survey of innovative edge intelligence architectures, 

while Section IV analyses the challenges and solutions of edge intelligence architectures. Lastly, Section V provides final 

remarks to the whole research. 

II. LITERATURE REVIEW 

A number of studies have defined edge intelligence viability by implementing various concepts to real-world application 

fields. Foukalas and Tziouvaras [1] have employed smartphones and edge servers to build an application for face recognition. 

From 900ms to 169ms, the latency has been lowered. Cloudlets may cut energy usage by 30 to 40 percent, for example, in 

cognitive assistive devices such as smartwatches. Some academics are particularly interested in the performance of edge 

computing and AI. For activity recognition, Tang, Liu, Xiao and Sebe [2] constructed a limited deep learning model. The 

example shows that simple DL models may be deployed to smart devices, which outperform shallow models. 
Additionally, wearable and integrated gadgets are subjected to the same tests. G-Board, Google's smartphone-based 

prediction model, is an instance of edge intelligence. G-board picks up on the unique typing styles of those who use it 

throughout the training process. As a result, the trained G-board could be used to power experiences that were specifically 

suited to the application's usage by the user. 

Researchers studied human-created architectures for edge intelligence. Nonetheless, there were a few flaws in this study. 

This study breaks down architecture into many different types. However, since architectural search requires hardware, most 

researchers are unable to use this search approach. Human-made architecture is the subject of the majority of the literature 

now available. A deep neural network for mobile and embedded devices was created using depth-wise separate convolutions 

by Georgiev, Bhattacharya, Lane and Mascolo [3]. Using MobileNets, a convolutional filter may be divided into two types: 

a depth-wise filter and a point-wise filter. Convolution just filters the input channels, which is a drawback. The combining 

of depth-wise and 1-to-1 inversion with separate convolution may be utilized to overcome this limitation. It uses 33 depth-

wise separate convolutions that need 8–9 percent less computation than standard convolutions to execute effectively. The 
deployment of KWS algorithms and depth estimations on edge devices, on the other hand, may also profit from the usage of 

convolutions, both in terms of points and depths. 

     Another approach is to use group convolution to reduce the processing expenses associated with the model 

construction process. It is unable to use certain basic designs like Xception and ResNeXt because of the resource-intensive 

deep 1-to-1 convolutions. For 1-to-1 convolutions, Zhang, Lo and Lu [4] suggest using pointwise group convolutions, which 

reduce the computational burden. Because the outcomes of one band are formed from a small percentage of the input 

networks, this has an unanticipated effect. Information transmission between groups may be hampered by "scarcely-

connected" convolutions, which are often utilized in depth- and organization convolutions. When it comes to dealing with 

this problem, Qin et al. suggest a merge and develop approach. It is possible to generate a major feature map by integrating 

information about the same location gathered from several sources. Data from the newly added features are collected and 

added to the network in this way. As a consequence, the problem of intergroup data loss is effectively addressed since 
information is distributed across all channels. 

This paper subdivides the human-created architectures into further classes. Orchestration-based ECAs-IoT for reducing 

latency via data placement. In addition, there are architectures based on big data analysis and security. Edge computing 

architectures are also discussed in this study, along with their obstacles and possible solutions. 

 

III. SURVEY OF INNOVATIVE EDGE INTELLIGENCE ARCHITECTURES  

 

Data Placement-Based Architectures  

For reduced maintenance costs and trustworthy SLAs (Service Level Agreements) compared to the conventional data storage 

method, more and more enterprises are moving their data to the cloud as cloud computing grows. Cloud Service Providers 

(CSPs) in the mainstream provide a number of data storage options to meet the needs of various customers. CSPs provide a 

wide range of price options for the same functionality. In addition, different locations have varied pricing policies for the 
same CSP. Data migration between datacentres of the same CSP is less expensive than migration between data centers of 

distinct CSPs. 

Additionally, a single cloud is subject to risks of vendor lock-in, i.e., main concerns include the pricing of cloud 

computing and the disruption of Service Level Agreements (SLA). Users may be forced to pay hefty relocation expenses in 
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these cases. An ant colony algorithm-based method was proposed in our past efforts for cost-effective information hosting 

in multicloud locations with high accessibility. Because of this, we're able to split up our data and store it in numerous CSPs 

instead of just one. Many researchers have worked to provide a data input to the system in multicloud settings that is both 

cost-effective and high-availability based on user requirements. 

Choosing a data placement strategy is influenced by the data object's workload. If you have a certain amount of time, 

then the amount of data you have to deal with (DAF, or Get access rate) is directly connected to the amount of data you have 

to retrieve (DAF). The workload fluctuates during the course of a data placement's lifecycle. It is more probable to be hosted 

in CSPs with reduced out-bandwidth charges if the data item is read-intensive and in hot-spot state. In contrast, data that has 

a low DAF is more likely to be kept in CSPs with smaller capacity costs since it is storage-intensive and has a cold-spot 

status to it. Because of this, as DAF grows, it is possible that a user's data placement technique may result in higher out-
bandwidth charges if they stick with it over the storage lifecycle. It is possible to incur high storage costs if a user utilizes 

tactics that are better suited for hot-spot status across the whole life-cycle of data storage. 

It is vital to build a technique for dynamically adjusting the data processing scheme depending on abstract data workload 

in order to decrease overall costs and boost reliability over the data object's lifespan. The total cost cannot get the optimal 

outcome because of the unpredictability of future data workload. As a result, the data stream placement technique relies 

heavily on forecasting future workloads. It's important to think about how to build a dynamic placement system that takes 

future accessibility frequency into consideration. Data generated by IoT systems is enormous. E-health and other critical IoT 

applications demand low latency data retrieval. ECAs-IoT have difficulty distributing IoT data to the correct edge nodes. So 

far, the following designs have been proposed: 

 

IFogStor and IFogStorZ 
There are a few ideas in [5] that use fog-node distributions and variations to reduce the overall latency of fog-node storage 

and retrieval of IoT data. A collection of IoT-enabled devices, fog computing devices, data facilities, IoT services comprise 

the systems infrastructure. Data created by the IFogStor system is stored and retrieved from efficient fog nodes to decrease 

overall network latency. Run-time execution of the data takes place on a node that is resilient. Details on information flow, 

network delay, application location and storage capacity are all available to this node. Fig. 1 depicts the architecture of the 

IFogStor system, which comprises three basic types of actors: special nodes that preserve IoT data, such as fog nodes or data 

centers. Any layer, save for layer 0, may include them. Data producers are nodes that create information. Nodes of this sort 

may be found in a variety of different tiers. Nodes that analyze or interpret IoT data are known as "data consumers. They 

might exist in multiple tiers. As a result of their capabilities, fog nodes might serve as both a data host and a data producer 

and consumer all at once. 

 
 

Fig 1. The architecture of the IFogStor system 
 

Two remedies were suggested to mitigate the issue:  

 IFogStor: a single integer program-like method to solve the issue of data placement. For small-scale applications, 

it identifies the best location; but, for a wide range of applications, its efficiency is unacceptably slow. 

 A technique that uses regional points of presence (RPoPs) as partitioning sites to separate geographical places as 

part of a divide-and-conquer strategy. A global solution is found by solving the specific problems in each site. 

Layer 4: Information/data centers  

Layer 3: RPoP 
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However, this method does not locate the best location, but it significantly reduces the amount of time it takes to 

get data. 

IFogStorG 

Even tthough IFogStorZ is easy to build, it loses a significant optimality amount when the generators of data are far away 

from information consumers. The amount of fog nodes and Internet of Things (IoT) services may also differ across 

subregions. As a result, subproblems with imbalanced causes are discovered. Improved runtime speed and reduced intricacy 

of the data placement technique are the goals of IFogStorG. A more advanced network topology-adapting technique is 

therefore possible. Following are the main considerations in the partitioning step: Data users and data providers are kept as 

close to one another as feasible in order to maximize the strategy's efficiency. Data consumers and producers were 

represented by matrices, while fog nodes were represented by the adjacency matrix, which mapped the value of latency in 
the architecture. For each subgraph, they used the IFogStor technique to find a solution. After that, the findings of each sub-

section are added together to arrive at the ultimate global answer. An example of a real-world smart city was used to gauge 

the effectiveness of their approach. The trade-off in number of data copies and latency reduction should be made as the 

number of information subscribers grows. 

 

Multireplica Data-Placement Approach 

Baranwal and Vidyarthi [6] dealt with the problem of delay that arises whenever information consumers from various 

geographic regions subscribe to the same information or data, but only a single copy of the data resides at the precise fog 

node. A greedy technique called IFogStorM was devised to reduce latency as a result of this problem. Overall latency was 

lowered with 10 percent over IFogStorG, and with 6 percent over IFogStorZ, according to the results. 

 
Orchestration-Based ECAs-IoT 

Because IoT networks improve system and security stability, and make network maintainability easier, they are considered 

a significant problem. As a central solution, some ECAs-IoT use software-defined networks, whereas other ECAs-IoT utilize 

other methodologies. 

 

Services and Tasks Allocation-Based Architectures 

By distributing critical delivery of services and task allocation to the most efficient edge nodes, cloud infrastructure improves 

Internet of Things (IoT) systems. This section focuses on ECAs-IoTs, which oversee the distribution of activities and 

resources in IoT systems. 

 

Mobile Fog Services’ Allotment (MFSA) 

IoT system may benefit from edge computing, which manages service processing and job distribution at the edge node. In 
MFSA, Ibaraki [7] used an Integer-Programming (IP) formulation to minimize the overall costs of delivering service while 

assigning requests to the available resources. The approach assigns a "probability of availability" to each server. Users and 

fog nodes are connected by a middleware controller, which has access to accurate information about the complete 

architecture. A nondeterministic component of each server's availability is also known to the program. Each user's service 

request is broadcast to various servers in order to handle this component.  

However, the user's ability to submit queries to an unlimited number of servers is constrained. It was also suggested that 

each user would have a budget for making requests to every server. The server resources might be shared by various users 

only if the total number of services supplied by the server does not exceed the capacity of each server. Servers' availability 

probabilities are unrelated to one another. There is a fee for every service. The Quality of Service (QoS) level was also 

governed by a set of limitations. Constraints include the likelihood that the user-specified server will be available. For the 

purpose of reducing the overall cost of assigning services, this challenge has to be solved. 
 

Multiagent-Based Flexible ECA-IoT (MAFECA) 

MAFECA is a multi-agent-based, adaptable version of the Internet of Things. Pirbhulal et al. [8] proposes a modular 

architecture that addresses the usual IoT network issues while optimizing tasks distribution between edge machines and the 

cloud. Two system abilities are employed in this architecture: user-oriented and environment-adaptation. The capacity to 

cater services to individual users in real time is enabled by the usage of data received by IoT devices, such as user behavior. 

When a job has a high volume and high quality, the processing site is determined by the environment in which it is being 

performed. 

 

Hierarchical Architecture to Place Mobile Workloads (HAM) 

HAM was designed by Lee and Lee [9] by presenting an algorithm that puts mobile workloads across various levels and 

determines how much processing capacity each task needs. 
 

Scalable IoTs Architectures-Centered on Transparent Computation (SAT) 

When it comes to the allocation of services, Das, Santra, Bodra and Chakravarthy [10] presented an infrastructure, which 

utilizes transparent computing to maximize scalability and minimize response time. An end-user layer is made up of IoT 
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devices; an end-layer disburses solutions to end-users; a foundational internet protocol connects edge computing systems 

and the virtualized system; a cloud layer incorporates high-performance computer technology and stashing resources to 

negotiate with huge datasets; and a layer for managing the entire infrastructure, which encompasses a managerial and 

functionality layer. 

 

Edge-centered Aided Living Platforms for Home Automations (E-ALPHA) 

Device handler, which separates the technology-based operations from communication-based services; embedded system, 

which dynamically loads specific protocols; and database, which is responsible for storing and retrieving data from the e-

health applications were some of the components proposed by  Kopmaz and Arslanoğlu [11] in their architecture for 

enhancing e-health applications. The EdgeCloudSim simulator was used to model this design. 
 

SDN-Based Fog Architectures 

We need to manage resources and data in IoT networks. ECAs-IoT might benefit from Software-Defined Networks (SDNs). 

ECAs-IoTs, which utilize SDN technologies to potentially manage the networks are covered in this section. 

 

Multi-level SDN-centered 5G Vehicular Architecture (VISAGE) 

Every year, the number of automobiles on our roads increases. Two sub-frameworks of the 5G-VANETS scheme proposed 

by  Das and Gurusamy [12] are Local SDN Controller (LSDC), and Central SDN Controller (CSDNC). Fog nodes, such as 

moving automobiles or even stationary cars, may be used in this way. Fig. 2 depicts the components of the architecture in 

[13]: The CSDNC is a permanent portion of the system that is hosted in the cloud and reflects global intelligence. Intelligence 

is centralized and represented by the DNC. In this case, it is a fog cell that is governed by the CSDNC. The LANC controls 
the fog cell nodes. Customers are unable to do their own computations, and fog nodes step in to help. People, vehicles, or 

organizations all fall under this broad category. In order to keep clouds and fog nodes connected, base stations must be used. 

Fog-SDN capabilities are broadcast by the LSDNC in VISAGE. Alternatively, each vehicle might use the fog cell's services 

e.g., fog nodes. The LSNDC might be used to link the fog cells to the Internet. As a result, the LSD interacts with the 

CSDNC, which in turn coordinates the resources. 

 

 
 

Fig 2. Central SDN Controllers (CSDNC) components 
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VANET's resources are better managed thanks to the design in [14]. Components of this architecture include the following 

elements: To control a group of Roadside Units (RSUs), forward data, store data on specific road systems, and provide timely 

services, the SDN controller uses a Road-Side Unit Controller (RSUC), which is located on the roadside and is accountable 

for global intelligence. The RSU is also obliged for communicating data and it typically controlled by SDN controllers. 

Cellular base stations are in charge of local intellect, data forwarding, and conveying fog warnings. However, there is no 

resource management or network orchestration in this design, thus there is no way to evaluate how well it performs. 

 

Software-Defined Fog Computing Networks Architectures for IoTs (SDFN) 

Sham and Vidyarthi [15] developed an integrated SDN and fog processing system, which differs from earlier systems by 

being generic. For the architecture, there are three main components: end-devices, SDN controllers (which are responsible 
for picking the best access points for the IoT nodes with the skillset about systems e.g., fog-device capacity to delegate works 

to them) and fog architecture. It is the center of the network where cloud computing takes place, and fog devices utilize APIs 

to give their services. Using a hierarchical deployment, the same application may execute on numerous fog devices at the 

same time A job is assigned to each fog device depending on its individual capabilities. Inter-transportation systems, video 

monitoring, and precision agriculture might all benefit from this architecture's flexibility and scalability in the Internet of 

Things. For the evaluation of the architecture, there is no simulation and no central control of the networks. 

 

SDN-Based Cloudlet Architectures 

In this part, we show how an SDN and a cloudlet may be used to administer an IoT networks. 

 

Dynamic Distribution of IoT Analysis (DDA) 
Multilayer architecture built on SDN that keeps track of Internet of Things (IoT) traffic, uses congestion prevention methods, 

and disperses analysis of IoT data among a Data Center (DC) and the network's edge has been suggested by Lozano-Rizk et 

al. [16]. The structure of this design is as follows: Connections to DCs at the network's edge is given, and the median 

bandwidths of IoTs data flows is tracked at the architecture tier of the networks. A specialized DC controller exists for each 

DC in the infrastructure layer. Cloud orchestrator is also deployed at upper layer of the DC controllers, providing federated 

cloud services. An IoTs-aware Transportation SDN Orchestrators (TSDNO) work as a controller of controllers and sits atop 

each domain's SDN controllers. TSDNO is also in charge of keeping IoT traffic flowing smoothly. IoT-aware GSOs are at 

the top of cloud orchestrators, orchestrating global end-to-end operations from the cloud to the edge. 

 

Big Data Analysis Architectures 

Using sensors, massive volumes of data are generated every second. Fog computing architectures for large data processing 

are discussed in this section. 
 

Hierarchical Dicentralized Fog Computing Platforms for the Smart City (HDF) 

Birkholzer, Cihan and Bandilla [17] presented a four-tiered hierarchical framework. The suggested architecture's tiers are 

shown in Fig. 3. Various sensors are spread around the network in order to gather and create data.  There are several kinds 

of sensors in Layer 4 that are deployed across the environment to gather and produce data. Subsequently, Layer 3 receives 

the unprocessed sensor data. In Layer 3, the edge devices manage a layer 4 sensor network that covers a local area, such a 

neighborhood. In this layer, edge devices perform real-time data analysis. For example, reports are generated by evaluating 

the data, and the infrastructure is alerted to dangers that were detected by sensors on the edge devices. Edges are then pooled 

and linked to one of intermediary compute nodes in Layer two when this step is completed. Using temporal and geographical 

data, this node can identify and respond to potentially risky situations. When it comes to total infrastructure analysis, 

monitoring and management, a cloud computing data center is the last layer. They created a pipeline system prototype and 
ran simulations of 12 distinct events using the sensors as part of their evaluation process. A hidden Markov structure was 

used to train the model to identify the events. Fog computing using cloud resources reduced latency in big-data processing, 

according to the findings. 

According to Pang, Wang and Fang [18], a comparable architecture was proposed for collecting data from a variety of 

sensors by employing cloud computing and hierarchical edge strategy. Many sensors provide information to the first layer 

of collectors, which is called edge level, before it is sent to a generic cloud service provider. In the hands of the main service 

provider, all information is centralized. Once fused data has been obtained, it may subsequently be utilized for big-data 

analysis by tailored service providers. 

 

Security-Based Architectures 

There are several security issues that arise as a result of the structure of IoT networks, including data confidentiality and 

authentication. This section focuses on ECAs-IoT, which tackle security issues on IoT networks, and explores edge-
computing technologies. Following are some examples of IoT network topologies that address security concerns while 

avoiding the use of Software-Defined Networks (SDNs). 

 

Privacy Preservation While Aggregating the Information/Data (P2A) 
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Hu, Dong and Wang [19] suggested an infrastructure for protecting sensor data privacy, which typically manages multi-

functional aggregation, computing overhead, and linking overhead, among other things. Devices, fog networks, fog centres, 

and a cloud provider are all part of this system, as depicted in Fig. 4. Smart gadgets use sensors to gather information. Two 

separate fog nodes receive the acquired data in order to maintain the privacy of the user. When fog centers issue aggregation 

queries, the fog nodes act as store nodes to aid in the aggregate of data. As a consequence of this, fog centers are able to 

gather the findings of queries made by fog nodes. Sending the primary query results to the internet center is the next step in 

the process. The cloud center is a service provider-managed aggregation application. Fog centers and cloud centers are built 

to be untrustworthy since they attempt to acquire secret original data. In order to avoid collusion, fog nodes have an interest 

in the original data since they can't trust each other. 

 

 
 

Fig 3. Suggested architecture's tiers 

 

It was suggested by Singh [20] to aggregate data while preserving confidentiality at the same time using a machine learning-

based approach. Rather than sending the real data, the model delivers a projected value that it has learned via training. Each 

region's training data is included in the dataset. It's explained here how the procedure works. For example, the cloud center 

may send questions to fog centers such as "average," "q percentile," "min," "max," and "summation aggregation," among 

others. All of these inquiries are sent to the fog centre via the cloud center. Due to its inability to respond to cloud center 

inquiries, the fog center produces its own queries from the ones that were originally sent. Sensors provide fog-node sensory 

data after separating sensory input into two parts. The fresh set of queries created by the fog centre are used to train and 

forecast the incoming data. Finally, the cloud center gets the expected values from the fog center and retransmits them to it. 

 
Fig 4. Parts of the server system 
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Lightweight Security based on Virtualization (LSV) Mechanisms 

According to Tiburski et al. [21], embedded virtualization and trust mechanisms may be used to protect edge systems with 

no necessity to re-engineer the programs placed in edge devices. Certain security needs are met by the proposed architecture: 

the secrecy of permanently stored components, the authenticity of executed codes, and run-time state integrity. Securing the 

boot, key storage, and cross domain communications are all part of the security architecture, which is composed of four 

techniques. By using Root of Trust (RoT), an algorithmically secure foundation, and the Chain of Trust (CoT) that would 

be built to start it up only after cryptographically secured technologies by a legal source is first installed employing public-

key authentication, edge endpoints are protected. Keys are also kept in specialized hardware, which is also accountable for 

verifying and executing the RoT process. Thus, in order to accomplish a second degree of safe boot verification, this 

embedded virtualization design uses several Virtual Machines (VMs) from various manufacturers. 
Running time assaults are still possible even after the CoT has been formed and hardware assisted virtual maintains a 

TEE; hence, the system architecture must be secured via run-time mechanisms. It was decided to test the system's design 

based on three metrics: storage footprint, speed, and latency between VMs. Edge-device protection might be provided with 

no need to re-engineer edge application. 

 

Service Architectures with Balanced Dynamic centered on the Cloud (SBDC) 

Since IoT devices have inherent limitations, traditional security measures are rendered ineffective. It was reported that Xu, 

Hang, Jin and Kim [22] used distributed edge devices to create a secure architecture built on trust methods and service 

templates that could withstand assaults and comparable service demands. It is made up of two themes: the service and parsing 

templates. 

The edge system, the edge system, and the cloud system make up this architecture's three main components. The data 
collecting, processing, and app-service levels are all separated into three tiers. It is on the app-service layer where the cloud 

is located. The edge platform and edge network are all placed at this level. A trust condition for IoT devices is established, 

and the trusted IoT devices are chosen to potentially execute services. This design dynamically changes the IoT load, and it 

satisfies end-users' needs, such as authenticity and accuracy, using this architecture. Virtualization processes are performed 

by converting physical components into virtual devices on this edge platform. Cloud load is dynamically adjusted through 

the use of edge layer services. IoT reliability is ensured through the use of the edge node at the data levels as well as the 

foundation of service-parsing templates.  

Services, which need additional resources than those available at the edge computing processing layer are processed in 

the cloud. Old data is logged and utilized for future analysis and data mining is handled by the cloud, which creates and 

stores service parameter templates and stores information matching them. The MATLAB platform was used extensively to 

conduct extensive tests to assess its architecture. Four Interconnects and a cloud make up the system's architecture. There is 

only one edge platform per IoT network. The findings suggest that this design has the potential to improve service efficiency 
and data integrity. 

 

SIOTOME: Edge-ISP Collaborative Architectures for IoTs Security 

When it comes to IoT devices, Dina Merlinda Izzah [23] collaborated with the Internet service provider (ISP) to discover 

risks and vulnerabilities early on. When compared to typical networks, SIOTOME's intrusion-detection system can learn 

from several domains to recognize different types of attacks. As an example, one domain may represent an individual Internet 

Service Provider's (ISP), as well as an individual building network. There are two high-level domains in the SIOTOME 

system architecture: SIOTOME/edge and SIOTOME/cloud. As part of the system design, the following components may 

be found in the smart house: IoT data is collected by the edge data collector, which is then processed by the edge analyzer, 

which then reports back to the edge controller via SDN for further analysis. The edge controller, based on SDN, is then used 

to configure the gateway, ensuring that all IoT devices on the home network are managed by the gateway. Cloud collector, 
cloud analyzer, cloud controller, and cross-layer controller make up the SIOTOME/cloud component. 

 

Edge-Computing Architectures for Mobile Crowd Sensing (MCS) 

In order to support mobile crowd sensing, Hamdan, Ayyash and Almajali [24] suggested a four architecture: the user-

equipment layer, which includes IoTs devices like wearable sensor devices; the edge computing layer, which manages 

workers in specific geographic areas; the cloud computing layer, which processes complex data; and the application layer, 

which analyzes the data. When a wireless crowd-sensing situation happens, this architecture delivers an alert to mobile 

devices, ensuring data privacy and reducing latency, while it distributes data across servers. 

 

ECAs-IoTs Integrating Virtualized IoTs Devices (ECV) 

Ullah et al. [25] presented an ECAs-IoTs to develop the intelligent cities. This design acts as the intermediary layer for 

potentially processing IoTs data. Data validation, metadata annotation, and security are all part of this architecture's six 
components, which include collection proxies, which connect every IoTs system to other components in the design; 

information affirmation that potentially maintains the integrity of gathered information; and safety, which accomplishes 

symmetric information encryption for Cloud computing before conveying them to virtual IoT devices. 
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IV. CHALLENGES AND SOLUTIONS TO EGDE INTELLIGENCE ARCHITECTURE  

As sensors become more widely used in the real world, more physical objects are being linked to the Internet of Things (IoT) 

to share data. Wearable medical devices, smart cities, smart homes, and environmental perception are just a few examples 

of where Internet of Things (IoT) technology is now being used. Traditional IoT services need data to be uploaded to cloud 

servers by sensors and devices that are linked through IoT. The IoT devices will get the processed data when the tasks have 

been finished. Sensors and gadgets may benefit from cloud computing, but the significant data transmission overhead cannot 

be overlooked. In 2018, the total number of IoT-enabled devices throughout the globe surpassed 11.2 billion, and this number 

is expected to expand to 30 billion by 2025. However, network capacity expansion is now lagging significantly behind the 

growth rate of data, and the complexity of the network environment makes it difficult to reduce latency. Traditional IoT 

services have a bandwidth crunch, which must be addressed if they are to be successful. 
A new computing concept known as "Edge Computing" (EC) has recently been suggested to alleviate the aforementioned 

bottleneck. EC is a term used to describe the technology that moves computing workloads to the periphery of the network. 

Comparing EC to cloud computing, there are several benefits: end-users' confidentiality is protected, data transmission is 

more efficient, network bandwidth is less burdened, and data centers' energy consumption is lessened. To reduce latency, 

Edge Nodes (ENs) may process, store, and send raw data produced by IoT devices rather than relying on centralized cloud 

platforms [26]. This eliminates duplicate data transfer. EC may better serve IoT and mobile computing applications that have 

tight reaction time requirements. 

    There is no guarantee that EC will solve all of your problems. It is true that IoT systems under the EC have substantially 

increased their potential in many domains, including computation offloading, accurate location and real-time processing. 

However, it is also true that low-latency data manufacturing near end-users has been given credit for this expansion. EC, on 

the other hand, raises additional security concerns and expands the system's attack surfaces in three ways: As a result of the 
ENs being scattered over the network, it is impossible to centrally supervise all of the equipment. The attacker may target 

vulnerable ENs and utilize the nodes it has taken control of as a launching pad for an assault on the whole system. Limitation 

in processing power: unlike cloud computing, the physical construction of ENs limits the computing power available, making 

them vulnerable to large-scale centralized assaults like Distributed Denial of Service (DDoS), which may inflict significant 

damage to the ENs in question. A broad variety of technologies, including wireless sensor systems, mobile data collecting, 

grid computing, and mobility data gathering, are used in EC. It is challenging to build a single security mechanism and 

ensure consistency across multiple security domains in this diverse environment. 

Due to the inherent dangers of edge computing, several security strategies and algorithms have been developed. 

Algorithms and models for intrusion prevention, privacy preservation, and access control all follow a consistent pattern. 

Traditional defenses are often rendered obsolete by the constant improvement of assault tactics and approaches. Artificial 

Intelligence (AI) is fascinating because it can help solve some of the most pressing security and privacy challenges. DDoS 

assaults and Distributed Denial of Service (DDoS) attacks are prevalent forms of intrusion. DDoS refers to the use of several 
hacked ENs to assault the server, increasing the strain on the website and affecting the server's responsiveness to routine 

requests. Attacks from the hijacked ENs are detected by the network's intrusion detection system (IDS), which blocks their 

access by looking for unusual network traffic. ML may assist IDS detect intrusions more quickly and correctly than classic 

identification approaches by extracting harmful access patterns from earlier data sets and training on that data. 

We need to keep our privacy protected since IoT devices are present in every area of our life, which holds a lot of 

sensitive information. In order to assure data security and privacy protection, the majority of currently used technologies 

encrypt the transferred data. However, the following approaches often have a substantial computational burden, rendering 

them inaccessible to resource-constrained ENs. Distributed Machine Learning (DML) reduces the danger of data leakage 

and network stress during transmission by making the ENs only need to communicate the variables to other ENs for 

collaborative learning after each training instead of directly transferring the actual data. Access control represents a critical 

problem when several Internet of Things (IoT) devices are working together in that environment. In other words, only the 
networks and data under their authority may be accessed by each authorized node. The classification technique under ML  

corresponds to the necessity to classify ENs into distinct groups based on permissions. Low-privilege IoT applications and 

high-privilege IoT devices are categorized by the algorithm. There will be rigorous controls on who has access to these high-

privilege gadgets. 

Artificial Intelligence (AI) is increasingly being used in a wide range of edge security applications as research into the 

topic progresses. However, the implementation of EN-related ideas faces several obstacles. Large volumes of unambiguous 

data are critical to the efficacy of ML training; yet, the assumption of adequate information is that the computer has suffered 

mass assaults and can properly recognize these hostile actions. The model's performance will suffer if the training set is 

tampered with, thus it's important to keep an eye out for assaults on the training set. However, since ENs have a limited 

computation and storage capacity, a lightweight AI method is also required. 

 

V. CONCLUSION 
The term "edge intelligence" refers to a network of interconnected devices and systems \used for artificial intelligence-based 

data gathering, caching, processing, and evaluation near to the point of data acquisition. Data processing quality and speed 

may be improved while maintaining data privacy and security via edge intelligence. Because of AI's recent advancements, 

the number of AI-based applications and services is on the rise. Face recognition, natural language generation, computer 
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vision, traffic predictions, and anomaly-based may now be achieved utilizing AI technology. In this study, researchers looked 

at designs for human-created edge intelligence. However, there were several flaws in this study. This study breaks down 

architecture into many different types. However, since it requires specialized hardware, architectural search is out of reach 

for most researchers. Human-made architecture is the subject of the majority of the literature now available. This paper 

subdivides the human-created architectures into further classes: 1) Data-Placement-Based Architectures to minimize 

Latency; 2) Orchestration-Based ECAs-IoT. 3) Big-Data-Analysis-Based Architectures; and 4) Security-Based 

Architectures. In most cases, existing security measures are based on the same algorithms and models for penetration 

detection, privacy retention or access control. Traditional defenses are often rendered obsolete by the constant improvement 

of assault tactics and approaches. However, the growth of artificial intelligence (AI) offers new answers to privacy and 

security challenges, including penetration detection, privacy retention, and access controls. 
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