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Abstract – The article discusses the vision framework for computing that includes image recognition, classification, prioritization, and 
navigation control modules. In this framework, a user model is used to feed the robotic controllers, whose performance improves in 
dynamic virtual contexts. In contrast, the vision module uses a multi-level perceptual neural network capable of efficient image 
segmentation, object recognition, and color segmentation, using the control module Position-Based Vision Serving (PBVS) and actions 
such as Avoid Collision (),Go-Ahead (), and Follow( ). It controls the motion of the robot, so the system successfully tested and met 
the requirements of the Antimedia Robotics Pioneer I robot. In addition, it was consistent with real life. The results show the 
effectiveness of the system in providing effective guidance and avoiding obstacles. Furthermore, the study investigates the use of 
artificial neural networks for image recognition and classification. In addition, it requires the use of SpCoMapping to add language 

maps to useful information. In summary, studies have emphasized the potential of computer vision and neural networks to improve 
robotic communication and language learning. 
 
Keywords – Navigation Control Module, Computer Vision System, Position-Based Visual Servoing, MLP Neural Networks, Feature 
Extraction Module 
 

I. INTRODUCTION 

Robotics is a multidisciplinary domain that encompasses the creation, assembly, functioning, and use of robots [1]. 

Robotics encompasses several disciplines that specialize in certain facets of the technology. Within the field of mechanical 

engineering, the word robotics pertains to the creation of the physical components of robots. In contrast, within computer 

science, robotics mostly involves the examination of robotic software. Additionally, there are several other facets of 

robotic development and related areas that intersect with it, such as electrical, control, software, information, electronic, 

telecommunications, computer, mechatronic, materials, and biomedical engineering. The objective of robotics is to 

develop devices capable of aiding and supporting humans. 

The discipline of robotics focuses on the creation of robots capable of automating activities and performing a wide 
range of professions that may surpass human capabilities. Robots are employed in various scenarios and serve diverse 

functions. Presently, they are particularly utilized in hazardous settings such as inspecting radioactive substances, 

detecting, and neutralizing bombs, as well as in manufacturing processes [2]. Additionally, robots are deployed in 

environments where human presence is not feasible, such as outer space, underwater, high-temperature conditions, and the 

cleanup and containment of dangerous materials and radiation. Robots have the ability to adopt many physical forms, with 

some specifically designed to closely mimic human beings. This is said to facilitate the acceptability of robots in certain 

imitative actions typically carried out by humans. The robot’sintent to mimicactivities of human like thinking, lifting, 

speaking, walking, and other duties. A significant number of contemporary robots draw inspiration from natural 

phenomena, therefore making valuable contributions to the domain of bio-inspired robotics. 

Some robots need operator input for operation, whilst others run independently. The idea of developing independent 

robots may be traced back to ancient times, but, important advancements in perception of their competence and 

prospective imposition did not occur until the 20th century [3]. Historically, many researchers, inventors, engineers, and 
technicians have often believed that robots would eventually possess the ability to imitate human behavior and perform 

activities in a manner similar to humans. The area of robotics is seeing fast growth nowadays due to ongoing technology 

advancements. Researching, creating, and constructing new robots serves a range of practical uses, including home, 

commercial, and military applications. Several robots are specifically designed to do tasks that pose significant risks to 
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human beings, such as disarming explosive devices, locating individuals trapped in unsafe structures, and investigating 

underground mines and sunken vessels. Robotics is used in STEM education as a pedagogical tool.  

Computer vision is a multidisciplinary domain that focuses on enabling computers to acquire advanced comprehension 

from digital pictures or movies. From an engineering standpoint, its objective is to mechanize activities that can be 

performed by the human visual system. Computer vision focuses on the automated extraction, analysis, and 
comprehension of valuable data from either a single picture or a series of images [4].We aim to develop a framework for 

devices to capture what they see using an automatic visual recognition system. Moving into computer vision, the field 

explores how artifacts interpret image-based information. Events vary; it can be video or images from multiple lenses and 

scanners. This task involves preprocessing, cutting images into blocks, and importing them into a module that handles and 

directs them. Studies show that when robots must work in environments full of change and motion, an efficient approach 

works best for their control systems. 

The visual component is based on multi-layer perceptron (MLP) neural networks; these handle tasks such as sorting 

colors, sculpting blocks from images, and dotting objects. The course also delves into design fine-tuning, which is best 

suited to describing neural networks so they can learn effectively. The results highlight the precision and effectiveness of 

the visual system and its capacity for practical use in real-life scenarios. In addition, the research examines the use of 

artificial neural network models in picture processing and their potential to enhance language learning attributes. In 

summary, the research presents a justification for creating and using a computer vision system to enable robots to navigate 
and avoid obstacles. 

The rest of the article has been organized as follows: Section II presents a discussion of the related works on computer 

vision system for robot navigation and object recognition in real-world environments. Section III focusses on computer 

vision system, discussing elements such as the robotic hardware, Saphira environment, interface, vision module, and the 

navigation control module. Section IV presents a critical analysis of the results, which focus on the system tuning, and 

related experimentations. Lastly, Section V presents a conclusion of the system used for robotic navigation and object 

recognition.  

 

II. RELATED WORKS 

Human-robot interaction is a contemporary field of study that explores the use of robots with visual systems in production, 

opening up new possibilities [5]. By prioritizing the gesture modality and image processing capacity, an industrial robot 
may immediately interpret visual input and initiate an action. The majority of industrial robotic systems are focused on the 

duties and objectives particular to a certain context.  The primary objective of the robotic program is to investigate the 

interface to a tele laboratory, which is specifically designed and developed to provide the user with several capabilities for 

the robot. These capabilities include cameras, control framework, and different representation methods such as augmented 

and virtual reality.  When the application is introduced into an industrial setting, the interaction between humans and 

robots may become a difficulty. However, this issue has been more easily managed in recent times due to the 

advancements in current vision systems. 

In the manufacturing environment, robots with vision systems can easily avoid problems. New innovations have 

resulted in bots with vision that can independently find clear paths in industrial areas. Independence requires such 

machines to travel without human assistance. Depending on the program, vision technologies fall into two categories: 

event-based or object-specific. They each outfit the robots with cameras and sensors and capture footage critical to their 

projects. 3D imaging technology enhances the ability to identify controllable features while identifying potential obstacles 
in humans. Object handling strategies—think object selection functions—depend exactly on the locations and visibility of 

objects in this environment. The additive 3D vision for a robot's energy is high in offices. This improvement comes from 

advanced hardware combined with sophisticated (voice-activated) software.  

Using 3D thinking, robots develop honed skills that allow them to perform precise automated tasks (passive voice). 

Thus, accuracy in these areas is greatly improved by the continued improvement of such systems. The OPC architecture is 

a safe and reliable communication protocol designed for manufacturers, capable of connecting the smallest sensor all the 

way up to the corporate IT level and cloud. OPC Vision is a specialized image processing system built specifically for use 

on factory floors and general industrial platforms. The proposed aim is to include any element of image processing 

components into industrial automation applications in order to develop machine vision technologies capable of interacting 

with the whole plant. The user-level system of processing image offers a linguistic representation of visual data. 

As presented by Quigley [6], manufacturing investigation duty systems of image processing interact with 
programmable logic controllers (PLCs).This approach transmits a pass or fail outcome to the Programmable Logic 

Controller (PLC) after picture analysis. The OPC Vision implements standardized communication methods. An ERP 

system has the ability to accurately identify the attributes of a frame grabber or retrieve image processing system streams 

via events for clients. An industrial automation application requires data and code to allocate tasks in the cloud. The cloud 

serves as a comprehensive middleware solution utilized in the Robotic Operating System (ROS) to facilitate 

communication and allow robots.  The Cloud-based Robotic framework is specifically designed for high-bandwidth 

robotic applications in the industry, enabling the outsourcing of vision-enabled tasks. 

This study presents a computer vision system consisting of primary parts. This article explores computer vision as a 

branch of artificial intelligence (AI) that empowers systems and computers to extract significant insights from videos, 
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modern photos, and other visual inputs. These insights may then be used to initiate activities or provide suggestions. AI 

empowers computers with the ability to reason, whereas computer vision equips them with the capacity to see, scrutinize, 

and comprehend. According to Cyert and DeGroot [7], computer vision operates similarly to human vision, but with 

humans having a prior advantage. The human visual system benefits from extensive exposure to contextual information 

over the course of a lifetime, enabling it to effectively discern objects, determine their distance, detect motion, and identify 
abnormalities within a picture. Computer vision enables machines to complete these jobs using algorithms, data, and 

cameras instead of relying on visual brain, optic nerves, and retinas. Moreover, it accomplishes these tasks in a much 

shorter amount of time. Due to its ability to assess a large number of processes or items per minute, a system trained to 

monitor asset manufacturing may detect invisible faults or problems that transcend human capabilities. 

 

III. COMPUTER VISION SYSTEM  

The system of computer vision described in this study consists of two primary elements. The first component is 

accountable for the recognition, segmentation, and preprocessing of the picture. The second module implements the 

control of navigation, which is responsible for directing the robot throughout the surroundings. An RS232 connection 

facilitates the transmission and reception of data between the laptop and the robot [8]. The interface of USB facilitated the 

establishment of a link between the camera and the laptop. The suggested system design may be categorized as adhering to 

the automatic model, indicating that the robot lacks previous knowledge of the environment and does not retain the 
obtained information.  

The reactive paradigm is very appealing for implementing robots’controllers operating in dynamic and real 

environments. This may be deduced from the reality that the automatic acts, under this model, are clearly defined 

relationships that dictate how the robot should respond based on the data gathered from its sensors. Furthermore, the 

behavior established in this paradigm may serve as a foundation for developing controllers that adhere to the hybrid 

paradigm. In this scenario, the robot would be capable of doing more intricate tasks, such as exploring the surroundings by 

generating a map and navigating around barriers. 

 

The Robotic Hardware  

The trials for the proposed vision system were conducted and evaluated only on an ActivMedia Robotics Pioneer I Robot. 

The robot's initial perception is formed using a set of seven Polaroid sonars 6500. External communication may be 
conducted via radio or the RS232 interface. In order to achieve visual awareness of the surroundings, the suggested 

graphic system used a Creative WebCam Go Plus camera. The camera has been positioned atop the robot and oriented 

downwards towards the floor. This design allows the robot to detect graphic data across a range of up to 4.8 meters in front 

of its base. 

 

Saphira Environment  

The interaction between the Pioneer I robot and advanced system is facilitated by the Saphira [9]. The Saphira is an 

ecosystem comprised of many collections used for the development of robotics applications. The Artificial Intelligence 

Center at Stanford Research Institute is responsible for its maintenance. The library contains functions that enable users to 

develop applications in the C/C++ language for controlling moving robots such as the Pioneer I. It provides an abstract 

interface to the hardware of the robot. 

 
The Interface  

The interface is a streamlined component that facilitates the communication between the system and the user. The 

parameters required for experiment control include color selection, maximum velocity, behavior weights, translation and 

rotation angles for picture segmentation (the specified color to be tracked). The interface also includes connection routines 

that are responsible for establishing and terminating the association with the simulator or the Pionner I robot. The interface 

allows the user to configure the test`s settings and see all the processing data via images and data created throughout the 

experiment. 

 

Vision Module  

A module may have several meanings, including: In the context of computer software, a module refers to a distinct and 

self-contained unit of code that may be developed and managed separately for use in other systems. For instance, a 
developer may design a module that encompasses the necessary code for using a sound card or conducting input/output 

operations on a certain kind of filesystem. The module may thereafter be disseminated and used by any system requiring 

that specific feature, and the development of the module can progress autonomously. This methodology is often referred to 

as a modular design. In the context of computer hardware, a module refers to a self-contained constituent of a larger and 

more intricate system. For example, the memory module may interface with a computer motherboard to function as an 

integral part of the system. The module of vision is responsible for data processing and acquisition, which is then 

transmitted to the control module. The vision module acts as an interpreter that takes an image from the environment and 

produces a high-quality rendering of the image as a result. 
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For instance, there is a crimson item located at location XY. The control module may create the required instructions 

for the robot's navigation established the output of the automatic module. The vision module is comprised of three distinct 

tasks: recognition, image segmentation, and preprocessing. The first task involves the capture of a picture from the camera, 

which has a tenacity of 320X240 pixels, and then reducing it to a resolution of 80X60 pixels. The picture decrease is 

achieved by the computation of the average of the data points. A 4X4 pixel window is applied to the acquired picture, 
resulting in a point that represents the mean value of the 16 pixels inside the window. The resolution of this level, set at 

80X60 pixels, has been determined by empirical analysis using genuine environmental pictures. The system has 

implemented the minimal resolution required for object recognition. The picture segmentation procedure is executed using 

a color categorization system.  

The system of classification consists of a collection of MLP neural networks see Fig. 1, where each network is 

responsible for categorizing a certain color, distinguishing it from other colors in the picture.Inquiring about a crimson 

color, we label every speck on an image—crimson or not. This task unfolds as we examine RGB figures for each dot [10]. 

Feed these RGB snippets to an MLP neural network; the outcome reveals whether crimson reigns or another tint prevails. 

Employing what's termed segmentation approach, this technique isolates one pigment alone. Thus, in our divided display, 

only two colors emerge: white signifies our color of choice; black encompasses all that remains. Effectively identifying 

split segments within the visual part stands as our primary objective.Aiming for precision here, we consult a specialized 

MLP neural network uniquely suited for the task at hand. Within the segmented snapshot (measuring 80X60 dots), these 
serve as input signals [11]. Subsequently, our network renders a verdict: presence—or absence—of an object? Affirmation 

from this mechanism not only confirms its existence but also determines its precise location onscreen. Here dwells our 

distinguished MLP neural network—with trio neurons crowning its output tier. 

The 1st and 2ndoutputs reflect the X and Y positions, of the item in the picture. The third output (P) indicates whether or 

not the equipment is current in the Fig 1. The X and Y outputs were distinct based on empirical observations from trials 

conducted in a real setting, where the pictures were labeled according to the following values. X varies from 0.0 to 1.0 

with an increment of 0.1, whereas Y ranges from 0.0 to 1.0 with the same increment. These values indicate the 

measurements corresponding to the object's location in the visual sector, not depending on the actual surroundings.  

Nevertheless, during the conducted testing, it was seen that the Y output values of 0.0, 0.4, 0.7, 0.8, 0.85, 0.88, 0.9, and 

0.91 could be associated with intervals of 0.5m in the actual habitat. When Y produces a value of 0.0, it indicates that the 

item is in close proximity to the robot. A Y output of 0.4 signifies that the image is about 0.5 meters away from the robot. 
This pattern continues with further Y outputs, each representing an additional distance of 0.5 meters. This estimate method 

for the robot's location in the actual environment has been designed based on the assumption that obtaining the actual 3D 

position of an item is not feasible without using stereo vision. 

 

 
 

Fig 1. The Recognition MLP Neural Network. 

 

Navigation Control Module  

A control module was created to enable the robot to travel around the habitat by keeping off barriers and use Position-

based visual servoing (PBVS) for guidance.  The PBVS system consists of three fundamental modules: the module of 

Feature Extraction, the module of Pose Estimation, which utilizes methods of processing image, and the Control module 

where conventional or intelligent controllers are implemented, as seen in Fig 2. The posture of the end-factor robot is 

determined by using the graded vision sensorrepresentation of the object. This estimation is achieved by the matrix of 

transformation𝑇𝑜
𝐸 .The retrieved characters f, derived from the reconstruction, are used to evaluate the pose Pa. This pose is 

a role of both the location of the orientation θ and the end effector 𝑥(𝑡). The alignment is determined by the use of inverse 

kinematics that compute the location of the target item 𝑥(𝑡) relative to the frame of a camera. The joint restrainer is 
specifically intended to ensure that the error e, which represents the difference between the actual pose Pa and the 

reference posture Pd, is reduced to zero.  

Ultimately, PBVS control computes the angular velocity (ωc) and linear velocity (vc). The inverse Jacobian matrix is 

computed using these numbers to determine the velocities that are joint required for the robot's movement. A benefit of 

PBVS is that it allows for the formulation of desired tasks in cartesian space, making it easy to calculate the error. In their 

study, Vijayan and Ashok [12] conducted a comparative investigation of PBVS and IBVS for industrial assembly, 
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focusing on the aspects of accuracy and speed. The PBVS method was applied to the ABB robot and it was discovered that 

it had a quicker execution time compared to the IBVS method. Additionally, the PBVS method was evaluated using 

numerous cameras. Sharma et al. used PBVS (Pose-Based Visual Servoing) to determine the transformation between the 

camera and robot base of a mobile robot. They employed the gradient descent approach for this estimation. Cheng, Li, 

Jiao, and An [13] used PBVS (posture-Based Visual Servoing) to estimate the posture of a robot and navigate around 
barriers. The authors used the aversion torque approach to determine the manipulators that are repulsive inverse 

kinematics, yielding results that were characterized by speed, flexibility, and accuracy. 

 
 

Fig 2. Position-Based Visual Servoingis a Closed-Loop Feedback Approach. 

 

Using this controller, the robot may autonomously navigate around the surroundings in a random manner while looking 
for the designated color item. Once the robot detects the item, the regulator guides the robot towards it. The controller was 

designed using the field potential approach, with the objective of producing the actual trajectory that the robot should 

traverse, considering the data produced by three actions enforced: Avoid Collision(), Follow(), and Go-Ahead(). The 

primary function, Go-Ahead(), aims to maintain continuous movement of the robot. The Follow() behavior is responsible 

for propelling the robot towards the destination by using information obtained from the vision module. The last activity, 

Avoid Collision(), ensures that the robot moves in the contradictory direction of any impediments encountered. The action 

is shown by a vector of 2D that includes the direction (𝜃𝐹) and magnitude 𝜃𝐹𝑔⃗⃗ ⃗⃗  
). The action Go-Ahead() does not include 

the perspective of the environment. The objective of this action is to maintain continuous motion of the robot. A vector, 

denoted as (𝐶𝑔), is used to depict the uniform field behavior. This vector has a constant direction and magnitude. 

 

|𝐹𝑔⃗⃗  ⃗| = 𝐶𝑔                                                                                                                   (1) 

 

𝜃𝐹𝑔⃗⃗ ⃗⃗  
= 0                                                                                                                     (2) 

 
In contrast, the Follow() behavior utilizes the visual perception module to guide the robot towards the destination. As 

previously stated, the output of neural network yields the X and Y coordinates that correlate to the object's location. 

Subsequently, the output Y has been discretized in the 3D actual world with values that increase by 0.5m. By using this 

method, it becomes feasible to compute an estimated numerical representation for the 3-dimensional coordinates, 

specifically referred to as X3D and Y3D. This function takes the input signals X and Y from the MLP network recognition 

and outputs the duo ([X3D], [Y3D]) in millimeters, which represent estimations of the image`s location in the actual 

habitat. Subsequently, the behavior of Follow()may be executed. The Follow() behavior operates using an attractive force, 
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denoted by a transmitter with a constant magnitude (Ca), and an angle that is rotation that shows the robot's orientation 

towards the destination. The direction is derived from the information acquired from the module of vision 

 

|𝐹𝑎
⃗⃗  ⃗| = 𝐶𝑎                                                                                                                    (3) 

 

𝜃𝐹𝑎⃗⃗ ⃗⃗  
= 𝑎𝑟𝑐𝑡𝑎𝑛(𝑋3𝐷 , 𝑌3𝐷)                                                                                            (4) 

 
The Avoid Collision behavior is responsible for maintaining a safe distance between the robot and any impediments. In 

this scenario, the sonar signals are taken into consideration. The Avoid Collision() function of the robot calculates the 

resulting force by summing together the seven unique vectors generated by its seven sonars, each representing a repulsion 

force. The Avoid Collision() activity generates a repulsion force via a radial field that follows a decay pattern described as 

follows: 

 

|𝐹𝑟𝑖
⃗⃗⃗⃗ | = 𝑒𝑥𝑝((−𝐷 + 𝐿)|𝑇)                                                                                       (5) 

 

The variables in the equation are explicitly specified as follows: The variable 𝐷 denotes the length between the 

obstacle and the robot, while 𝐿 indicates the limit of closeness. Additionally, 𝑇 is a constant that governs the pace at which 

the function of exponential declines. The indication of the aversion force, represented by the angle 𝜃, is determined by: 
 

𝜃𝐹𝑟𝑖⃗⃗ ⃗⃗  ⃗ = 𝑎𝑟𝑐𝑡𝑎𝑛(−𝑋𝑆𝑖 , 𝑌𝑆𝑖)                                                                                        (6) 

 

The variables 𝑋𝑆𝑖 and 𝑌𝑆𝑖 represent the 𝑋 and 𝑌 coordinates, measured in millimeters, collected from each of the seven 

sonar devices, denoted by 𝑖. The negative indicator is used to reverse the direction, since this action is necessary to 

maintain a safe distance between the robot and the barriers. The resulting repelling weight is determined by the vector total 

of the vectors that are individual produced by each sonar, as seen in Equation 7. 

 

𝐹𝑅
⃗⃗⃗⃗ = ∑𝐹𝑟𝑖

⃗⃗⃗⃗ 

𝐼

                                                                                                            (7) 

 

The resulting force (robot trajectory) is determined by calculating the forces for each prescribed behavior. 

 

𝐹 = 𝑃1𝐹𝐺
⃗⃗⃗⃗ +  𝑃2𝐹𝐴

⃗⃗⃗⃗ + 𝑃3𝐹𝑅
⃗⃗⃗⃗                                                                                                  (8) 

 

The weights of each force in the system are denoted by Pi, where 𝑖 =  1, 2, 3. The values of 𝑃𝑖 in the studies were 

stated as follows: •  𝑃1 =  0.5 •  𝑃2 =  1.0 •  𝑃3 =  0.7. Once the resultant weight has been computed by integrating 

the behaviors, the robot must penetrate using the values: 

 

𝑉𝑒𝑙𝑇 = |𝐹 |𝑉𝑒𝑙𝑀𝑎𝑥                                                                                                   (9) 

 

𝜃𝐹 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝐹𝑋 , 𝐹𝑌)                                                                                                  (10) 

 

The translation velocity of the robot is denoted as 𝑉𝑒𝑙𝑇 , whereas 𝑉𝑒𝑙𝑀𝑎𝑥 represents the high speed of the robot. The 

robot`s direction is determined by the arctan𝐹𝑋 , 𝐹𝑌 function. 

 

IV. RESULTS AND DISCUSSION 

The findings are divided into two parts: the first part discusses the system tuning procedure, including parameter design 

and neural network learning, while the second section details the tests conducted with the Innovator I Robot in an actual-

world setting. 

 
System Tuning  

The first section of this document outlines the conducted tests and the resulting outcomes of the system tuning process. To 

be more precise, we are presenting the outcomes of the process of learning of the NNs that are accountable for the 

recognition task and the picture segmentation job. Two algorithms, namely backpropagation [14] and Rprop[15], were 

used for the learning process. Two different implementations of the backpropagation method were used: batch and on-line 

mode. 

 

 

 



 

ISSN: 2789–181X                                                                             Journal of Computing and Natural Science 4(2)(2024) 

70 

 

Image Segmentation Neural Network  

A database containing 100 patterns was built for the purpose of training the image segmentation neural network. To train 

the neural network to identify the color red, a dataset consisting of 50 pixels that are red patterns and 50 other colors was 

generated. This piece included three colors: red, blue, and yellow. By splitting the data bank into two sections—80% for 

the technique of learning and 20% for testing the set geology—a few experiments were conducted to determine an 
appropriate neural network topology. These studies revealed that the earth science 3X3X2, which denotes a NN with three 

RGB neurons of input, three hidden layer neurons, and two output layer neurons, was more suited to the red and blue 

colors than the yellow color, where the topology 3X5X2 produced superior results. Tests using the 10-Fold Cross-

Validation approach were conducted after the identification of an appropriate topology. The outcomes of the learning 

process employing the following algorithms are shown in Fig 4: On-Line Backpropagation, Rprop, and Backpropagation 

for the red color (the results were almost same for the blue and yellow colors).  

Fig 4 represents the number of iterations required for the neural network to converge, as well as the standard deviation 

(SD) and the mean square error (MSE) averages during the learning process's ten-fold execution. The findings show that 

the algorithms' accuracy was almost identical, with the only difference being the number of iterations each learning 

method utilized. For every approach, the amount of processing time required for learning was about equal. To assess the 

picture segmentation process's real-time performance, certain Pentium IV 2.26 GHz tests were run.  

 
 

Fig 3. Discretized Sigmoid Function. 

 

 
 

Fig 4. The Image Segmentation Neural Network's Learning Procedure Yields. 
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The neural network took 0.0125 seconds for the red and blue colors to fragment a picture with 80X60 pixels, and 

0.0187 seconds for each frame including yellow.  

 

 
Fig 5. Final Product of Segmenting the Image Using the 

RGB Color Space. 

 
Fig 6. The Robot Operating in A Real-World Setting. 

 

In an effort to enhance the segmentation task's real-time responsiveness, we also tested a disconnected logistic function 

(𝑆𝑙(𝑥)) (see Fig 3) that approaches the logistic function that serves as the neurons' call up function. The segmentation of 

the frame for the hues blue, red, and yellow took 0.0062 seconds and 0.0125 seconds, respectively, to complete using this 

new sigmoid function. The effectiveness of the suggested scheme to work in actual-time setting is further shown by these 
findings, which highlight the benefit of using this discretized function over the original sigmoid function. Using this 

function did not result in any quality loss throughout the picture segmentation process. The result of the sectionalization 

for the blue and red colors is shown in Fig 5. The segmentation outcomes for the 𝑆𝑙(𝑥) and the original sigmoid function 

were indistinguishable. In Fig 5, (a) is the original picture 01; (b) is image 01 after being segmented and preprocessed for 

the color blue. (c) is the original image, and (d) is the segmented and preprocessed image 02 for the color red. 

 

                        

 

 
 

Fig 7.The Outcomes of The Recognition Neural Network's Learning Process. 

 

Recognition Neural Network  

The use of artificial neural network models in image processing, where parallel architectures and high computing speed are 
necessary, is become more appealing. Neural network applications to challenges requiring some level of intelligence or 

human-like performance have been the subject of several articles published recently. An innovative neural network design 

for image identification and classification is described in [16]. According to Cios and Shin [17], an object's attribute may 

be estimated or recognized using a suggested neural network known as an image recognition neural network (IRNN). An 

analog gray level picture is fed into an IRNN, which outputs an appropriate recognition code.  

A database of seven hundred patterns was developed in order to aid the MLP in charge of the recognition job during its 

learning phase. Every pattern is made up of a preprocessed, segmented frame (a binary picture of 80 by 60 pixels) and the 

label for that frame, which indicates where the item is in the visual field. We also partition the database into two portions, 

20% for testing the configured neural network and 80% for the process of learning, in order to determine the topology of 

this neural network. The three algorithms—On-Line Backpropagation, Batch Backpropagation, and Rprop—were used to 

determine that the topology 4800X10X3 is suitable for accomplishing this recognition task. The design of this neural 
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network comprises of 10 cells in the layer that is hidden, 3 cells in the outer layer (representing 𝑋,𝑌, and 𝑃), and 4800 

cells in the inner layer (corresponding to 80X60 pixels of binary). The cross-validation technique, using a 10-fold 

approach, was conducted to the neural network set with dimensions of 4800X10X3. The results of this procedure, 

employing the three designed algorithms, are presented in Fig 7.Fig 7 displays the almost identical results of the two 
methods, with the benefit that the Rprop algorithm ran quicker than the others.  

 

Experimentations  

Following system calibration, a number of tests using the Pionner I robot were conducted to evaluate the CVS's 

performance in an actual setting. A Creative WebCam Go Plus and a Pentium III 500MHz laptop were used to run the 

CVS. As stated in [18], the purpose of the first studies was to determine appropriate parameters for the behavior force 

weights. These tests were conducted in a basic setting in order to fine-tune the system's ability to track a target and avoid 

obstacles without colliding. Following the first trials, which were carried out to determine certain system parameters, we 

constructed many scenes in a real setting with arbitrary barriers and a target that was also positioned arbitrary inside these 

scenes (as shown in Fig 6). In every trial conducted with the determined settings, the robot demonstrated navigational 

skills by dodging barriers and tracking a target—characterized by a distinct color—when it entered its range of vision.  

Wolf and Sukhatme [19]conducted an experiment in which they generated a semantic map inside a real-world setting. 
Fig 8 displays the robot and the environment we used, respectively. The laboratory room doubles as the researcher's study 

area and living quarters for experiments. In this experiment, we show that SpCoMapping can learn terminologies as 

location names without establishing them by extracting word information from provided phrases. To demonstrate how 

many words may be associated to a location without the place names pre-setting, we utilized lines as word characteristics. 

We gave each of these 20 lines—which include 50 vocabulary words—five times. Approximately 407 times, we gave the 

RGB information. We used SpCoMapping in this experiment since we did not know how many spatial notions there were. 

We have 120 as the maximum number of spatial ideas. The hyperparameters that we have specified are as shown: 𝛾 =
1.0 ∗ 106, 𝛽 = 0.6, 𝜒 = 100.0, and 𝛾 = 4.0.Using the 𝑡𝑓 − 𝑖𝑑𝑓 techniqueas collective data between sentences and 

words, we establish the weight for vocabulary features. The following equation was used to determine each word's weight 

in the sentence. 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘

log
𝐷

𝐷𝑖

                                                                                  (11) 

 

where 𝑛𝑖,𝑗  is the total word count in the phrase 𝑗,𝐷is the quantity of phrases, and Indicates how many sentences there 

are, including word I. The weights of words that are used in numerous phrases, such as “is,”“here,” and “you,” are 
decreased by using the tf-idf algorithm. This procedure aids in the learning of vocabulary associated to locations. The 

suggested approach will be stable if we sample 𝑤𝑙 100 moments and use the mean as 𝑤𝑙.Furthermore, we used word 

information to facilitate pre-learning via spatial conceptformation. Klein et al. [20] computed 1000 iterations while 

keeping the hyperparameters set to the same values. The scholars initialized π,μ in Algorithm 1 line 1 using the pre-

learning outcome. In Analytic 1, line 2, we set the value of 𝐶𝑖,𝑗  as follows: If mxt is not an unoccupied area, then 𝐶𝑖,𝑗 lack 

any dimensional concept. 

 

𝐶𝑖,𝑗 = 0                                                                                                                     (12) 

 

The sampling equation may be expressed as: 

 

𝐶𝑖𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑁 ((𝑖, 𝑗)|𝜇𝑙
𝑝𝑟𝑒

, ∑ )
𝑝𝑟𝑒
𝑙 )                                                                      (13) 

 
Fig 8. The robot and an example of trials conducted in an actual setting. A robot used for conducting research on an 

individual's daily habitat Human Support Robot. We used the HSR developed by TOYOTA, which is equipped with the 

Xtion PRO LIVE sensor manufactured by ASUS for capturing RGB information, and the UST-20LX sensor manufactured 
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by Hokuyo for obtaining laser-range information. (A) The PC was equipped with ROS Kinetic and Ubuntu 16.04. (B) The 

depiction of the habitat used in this test and (C) the layout of the habitat. 

 
 

Fig 9.The cartographic representations used in the trials. (A) The map representing the distribution of occupied spaces 

in an individual living habitat and (B) the outcome of prior studying. 

 

The distribution of multivariate Gaussian is represented as 𝑁(µ𝑝𝑟𝑒, 𝛴𝑝𝑟𝑒), where µpre is the medianbeeline of the 

position dispersion for the lthpre-studying group, and 𝛴𝑝𝑟𝑒 denotes the matrix of covariance of the transformation of 

position for the lthcategory of pre-studying. Utilizing pre-studying enhances the stability of language acquisition 

characteristics and reduces the number of iterations needed for learning.Fig 9 displays the ownership map of grid of the 

user's staying habitat and the pre-learning result. The ownership map of grid has 19,255 pixels that are categorized as 

unoccupied space. 
 

V. CONCLUSION  

This research introduced a computer vision system comprising of preprocessing, segmentation, and image identification, 

with a module for navigation control.  It was decided that the responsive model is well suited for the design of robots 

operating in a realistic, dynamic environment. The vision module used a multilayer perceptron (MLP) neural network for 

color segmentation, image segmentation, and object recognition. The navigation control module used position-based visual 

servoing (PBVS) to guide the robot and incorporated Go-Ahead(), Follow(), and Avoid Collision() functions to facilitate 

obstacle avoidance and navigation. Study Active Media Robotics with the Go Plus Camera of Creative Webcam was 

developed on the Pioneer I robot. The tuning process includes parameterization using the backpropagation RProp 

algorithm and learning a neural network. The findings indicated that the algorithms exhibited comparable levels of 

accuracy, differing mainly in the number of iterations used by each learning approach. The segmentation task's real-time 

performance was evaluated using Pentium IV 2.26 GHz testing.The research also examined the use of models of artificial 
neural network in processing of image and their capacity to estimate or identify object properties. A further experiment 

was carried out using SpCoMapping to produce a semantic map in an actual environment. The researchers used sentences 

as lexical features to illustrate the extent to which words might be linked to a specific area without prior specification of 

place names. 
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