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Abstract – Using electrodes placed on the scalp, a Brain-Computer Interface (BCI) may read electric activity in the brain and interpret 
it into orders to be sent to output devices. Artificial neuromuscular output channels are not used in BCIs. People with neuromuscular 
illnesses such as cerebral palsy, amyotrophic lateral sclerosis, spinal cord or stroke might greatly benefit from BCI since it can help 
them regain or maintain the abilities they once had. Standardized technological platforms have been developed as a result of massive 
multinational research efforts; and these platforms have the potential to be utilized to tackle intractable issues such as feature selection 
and segmentation, as well as the brain's incredibly complex dynamics. Researchers working on BCIs face additional challenges from 
the impact of time-variable psycho-neurophysiological fluctuations on brain signals, which must be overcome before the technology 
can be used in a plug-and-play fashion in daily life. This article provides a concise summary of the decades of research and 
development that have gone into BCIs so far, as well as a discussion of the most pressing issues yet to be solved. 

Keywords – Brain-Machine Interface (BMI), Brain-Computer Interface (BCI), Electrocorticography (ECoG), Electroencephalogram – 
EEG. 

I. INTRODUCTION
A Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI) is a method of transmitting information between a 
person's brain and a machine, often a microprocessor or robotic limb. In most cases, BCIs are used to study, map, aid, 
enhance, or restore some aspect of human cognition or sensorimotor performance. Based on the proximity of the electrodes 
to the brain tissue, BCI implementations may be classified as either non-invasive (Electroencephalogram – EEG, EOG, 
MEG, MRI) or partially-invasive (ECoG, endovascular). Jacques Vidal of UCLA started studying BCI in the 1970s with 
the help of a National Science Foundation grant and then a contract from DARPA. The term "brain-computer interface" 
was first used in a scholarly article written by Vidal in 1973 [1]. The amazing plasticity of the brain may allow for the 
processing of signals from inserted prostheses in a manner similar to that of natural detector or effector pathways after 
some adaption. After many years of testing on animals, the first neuroprosthetic devices intended for human implantation 
were available in the mid-1990s. 

The term "Brain-Computer Interface" (BCI) [2] refers to a digital framework, which is capable of receiving brain 
transmissions, decode them, and then transmit the resultant commands to a console to generate the intended outcome. That 
is because BCIs bypass the brain's typical output channels, which include the limbs and the musculature. Under this 
definition, BCI may only refer to devices that detect and process brainwaves or other neural activity. Therefore, a 
communication system that relies on voice activation or muscle activation is not a BCI. An EEG device cannot be viewed 
as BCI since it typically records the signals from the brain and does not issue an output, which impacts the environment of 
users. The famous myth and misconception that BCI can "read your mind" is unfounded. The objective of developing 
BCIs is not to "read the minds" in the sense of surreptitiously gleaning data of the user without their knowledge or 
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permission, but rather to enable individuals to interact with their surroundings by means of brain signals rather than 
muscular. The user and BCI are able to work in concert with one another.  

When properly trained, the user is able to generate brain signals that contain intention, and the BCI is able to decode 
these signals and turn them into commands for a console to execute out the user's goal. Is it possible to use detectable 
electrical brain impulses as data conduits in human-computer interaction or for the regulation of prosthetics? To what end? 
Vidal asked back in 1973. In an effort to assess whether or not computers might function as a prosthetic extension of the 
brain, he initiated the Brain-Computer Interface Project. The ability to utilize impulses from individual cortical neurons to 
move a meter needle was first shown in the late 1960s in monkeys, but systematic human research didn't begin until the 
1970s [3]. Human BCI research progressed slowly at first due to limitations imposed by both technological constraints and 
our limited knowledge regarding the psychology of the brain. In 1980, Nusier and Alawneh [4] showed that people could 
not effectively control upward movements of rocket images on movable TV screens by applying neurofeedback on slow 
cortical possibilities in EEG activity. 

Using the P300 event-based potential, Sellers, Arbel, and Donchin [5] demonstrated in 1988 that healthy volunteers 
could type sentences onto a computer. Since the 1950s, movements and their simulations have been connected to 
sensorimotor oscillations (mu and beta waves) documented throughout the sensorimotor cortex. In the late 1970s, Tato” 
Sokhadze [6] demonstrated that EEG biofeedback training had the potential to enhance the mu rhythm. Using this 
information as a springboard, Ross and Balasubramaniam [7] guided study participants through the process of controlling 
the amplitudes of sensorimotor rhythms in order to accurately move a pointer in one- or two - dimensional on a computer 
screen. A microelectrode collection was integrated into a young man’s foundational motor cortex in 2006 once he suffered 
C3/C4 spinal injuries, which rendered him with full tetraplegia. This form of electrode array was linked to BCI system that 
allowed the patient to do basic tasks such as opening and closing a prosthetic hand, controlling a television, sending and 
receiving simulated emails, and operating a robotic arm. By using Electrocorticography (ECoG) to capture signals from 
the brain's surface, Witham et al. [8] demonstrated in 2022 that a BCI can successfully translate these signals into keyboard 
input. Over the last three decades, there has been a fundamental increment in the number of articles devoted to studying 
brain-computer interfaces (see Fig 1). 
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Fig 1. The brain-computer interface as discussed in scholarly journals over the last three decades 

Within the last 40 years, BCI research—which was formerly conducted only in a few of labs—has exploded into a 
thriving and fast expanding area of study. The majority of articles are from the last five years. Interface between the 
computer system and the human brain.  

The Brain/Neural Computer Interaction (BNCI) project [9]funded by the European Commission purposes to centralize 
the BCI research on six fundamental software themes: restoration (such as regaining access to a locked room), replacement 
(such as a BCI-controlled neuroprosthesis), augmentation (such as enhanced user knowledge and experience in games 
consoles), supplementation (such as virtual reality glasses), improved performance (such as upper limb regeneration after 
cerebrovascular accident), and data analysis (e.g., decoding). Many issues and developments in the BCI industry are 
covered in this review. We look to the most recent literature for in-depth analyses of specific BCI areas (in Fig 2). 

The data came from a PubMed search using the term "brain computer interface" in the query bar. Only publications 
that were indexed as of December 4, 2020, have been taken into consideration. More articles have been published in this 
decade than in the previous one, suggesting a growing interest in BCI technology and highlighting its increasing relevance. 
Section II presents an overview of Brain-Computer Interfaces (BCI) where details about the representation of BCI systems 
and factors affecting BCI performance are discussed. Section III focuses on the neurological/psychological and 
technological challenges facing BCI. Section IV reviews the neuroplasticity, signal processing, and applications of BCI. 
Lastly, Section V draws final remarks on the paper as well as directions for future research. 
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Fig 2. The total number of works published throughout the last 40 years. 

 
II. OVERVIEW OF BRAIN-COMPUTER INTERFACES 

Representation of BCI Systems 
Intra-cortical Brain-Computer Interface (BCI) devices might help people with paralysis control their prosthetics and other 
assistive technologies by translating their brain activity. In recent years, it has been shown that BCIs can operate a wide 
range of equipment, including computer mouse, robotic arms, communication devices, and even the individuals' own 
paralyzed limbs. When transitioning BCI systems from presentations in the lab to clinical usage, it is important to keep the 
end user's goals in mind. User studies indicate that speed, flexibility, and accuracy are among the most valued 
characteristics of a BCI system. Building BCI systems with these considerations in mind might speed up their widespread 
clinical use. 

The quality of the neural decoding element of a BCI system determines its precision, speed of response, and utility. 
The decoding algorithm's job is to figure out what kind of function the users want to do according to the signals they're 
sending from their brain. Therefore, the decoding method is dependent on not only the accuracy and speed with which 
functions/actions can be retrieved, but also the quantity of operations that can be decoded. Also, the BCI user's sense of 
agency depends heavily on the response time, which is the time it takes for the BCI to register the user's desire to act 
(perception of agency over BCI operation). 

The first stage in developing a decoder that meets BCI users' expectations for accuracy, response time, and number of 
functionalities is determining what those expectations are. Huggins, Moinuddin, Chiodo, and Wren [10] conducted a poll 
of people with Spinal Cord Injury (SCI) SCI who would utilize a BCI and discovered that the vast majority said they 
would be happy with an accuracy rate of 90% or higher. Accuracy may signify various things depending on the BCI-
enabled task; however this can be used as a minimum acceptable requirement. Several measures, including the degree of 
agreement between expected and actual cursor movement, may be used to assess the efficacy of BCIs for continual cursor 
control (R2). However, conventional classification accuracy is often employed to assess BCIs for discrete control system 
like "on," "off," or "left," "right," etc. Therefore, the level of accuracy required to pass muster as a BCI may vary from one 
job to the next. 

The authors in [11] also discovered that the people they surveyed wanted BCI communication systems to be able to 
process at a rate of at least 20 to 24 characters in a single minute (2.5 to 3 s each answer). There are no established latency 
standards for BCI systems that attempt to restore hand function at this time. Ferreira et al. [12] have shown that even with 
delays as small as 750 milliseconds, able-bodied users using EEG-based BCI technologies to move the cursor with 
imaginary hand gestures experience a decrease in their feeling of autonomy. Finally, despite being a key need for potential 
users, the polls did not specify a target amount of BCI functionalities that users would consider appropriate. If no data is 
available, we will attempt to optimize the number of features while still achieving the desired levels of accuracy and speed. 

One can classify BCI systems according to the mental processes they employ: In passive BCI, the user's unconscious 
feelings and thoughts are decoded, whereas in active BCI, the user's intention-based brain activity is directly engaged. 
Brain-computer interfaces that are "reactive" read brain waves that occur in response to something happening in the 
outside world. One application of passive BCI is detecting driver drowsiness to prevent traffic accidents. Active BCI refers 
to systems that are driven by the user's intentional Motor Imagery (MI), while reactive BCI refers to systems that are 
driven by visually evoked P300 caused by external stimulation. Invasive and non-invasive BCIs have been classified based 
on their signal-acquisition modalities. Although EEG-based non-invasive BCIs have been used extensively, more recent 
developments have seen the implementation of functional transcranial Doppler ultrasonography, functional near infrared 
spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). However, 
electrocorticography (ECoG) and intrusive intracortical sensors have been utilized to offer a higher signal-to-noise ratio 
and pinpoint the precise location of brain activity. 
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Inducing plasticity, or the modification of neurosynaptic organization, requires both the decoding of neuronal activity 
and the delivery of environmental cues into specific regions of the brain. Rehabilitative applications of BCIs and other 
neuroscientific fields rely on the brain and nervous system's natural plasticity. Some BCIs actively activate particular 
regions of the brain using external stimulation techniques like repetitive transcranial magnetic or transcranial stimulation, 
while others just convert brain data into computer instructions. The bidirectional design of a BCI consists of two brains or 
a single brain plus a feedback modality. Transcranial instantaneous current stimulus controlled by EEG signals associated 
to MI alters the connections in sensori-motor systems in healthy persons. The bidirectional BCI architecture also shows 
promise for developing direct brain-to-brain communications. Proprioceptive responses and efficient electric stimulations 
stimulated by neural activities as response for boosting and recovering auxiliary motor activities are two examples of the 
supplementary modalities required by certain BCI applications. 
 
Factors Affecting BCI Performance 
Although brain-computer interfaces (BCIs) show a lot of promise, they are currently plagued by low dependability. 
Guidance of users to develop BCI control mastery is an intriguing research field since it complements but does not replace 
efforts to improve brain signal processing. Because of this, we provide here a collection of cognitive and motivational 
aspects that might impact the learning process and should be taken into account to enhance the overall efficiency of BCI 
users. Keller's integrative theories of motivation, volition, and execution served as a foundation for this research. This 
theory seeks to explain what helps human users learn and execute effectively regardless of the task by taking into account 
both motivational (affective) and cognitive elements. Learning environments, like BCI training regimens, may be 
developed with these considerations in mind.  

According to the idea, increased user effort and quality performance result from optimizing four motivational factors: 
attention (piqueing interest), relevance (being congruent with an individual's aims or ideals), confidence (success 
expectations), and satisfaction (extrinsic and intrinsic incentives). More effective skill acquisition is also achieved by 
accounting for the user's cognitive components, such as his or her limited memory retention (which necessitates reducing 
the skill-unrelated data), the manner in which data is actively handled by him or her (which requires making pertinent 
information salient), and the knowledge already stored in his or her good memory (which requires relating the to-be-
learned expertise to existing knowledge). In most cases, designers of brain-computer interfaces (BCIs) neglect to take into 
account important elements.  

Possible improvements in user BCI control might result from optimizing motivating elements while still taking into 
account cognitive restrictions. Although brain-computer interfaces (BCIs) show a lot of promise, they aren't particularly 
dependable just now. One promising avenue of study goes beyond just enhancing brain signal processing to instead teach 
users how to become BCI control masters. Our goal here is to help BCI users enhance their overall performance by 
presenting a collection of cognitive and motivational aspects that may affect the learning process. Messina et al. [13] 
explain what helps human users learn and perform well regardless of the job at hand by drawing on Keller's integrative 
psychology of motivation, volition, and achievement, which blends motivational (affective) and cognitive components.  

Training environments, such as brain-computer interface (BCI) training protocols, may be designed with these 
considerations in mind. Based on this hypothesis, users are more likely to put forth their best effort because they are more 
interested in what they are doing, have higher expectations for success, and are more satisfied with the outcomes of their 
efforts (thanks to both intrinsic and extrinsic incentives). It is more effective to learn a new skill when the learner's 
cognitive factors are taken into account. A few examples of these factors include the user's limited cognitive function 
(which calls for a reduction in the amount of non-skill-related data), the way data is proactively analyzed by the student 
(which calls for the elevation of important material), and the learner's prior knowledge. In most cases, designers of brain-
computer interfaces (BCIs) neglect to take into account important elements. Possible improvements in user BCI control 
might result from optimizing motivating elements while still taking into account cognitive restrictions. 

There are three main requirements for BCI to be used in the medical field: (1) a user-friendly signal acquiring device, 
(2) widespread system validation, and (3) the potential and reliability of BCI. BCI performance is enhanced when invasive 
intracortical recordings are used to restore motor function in patients with motor disabilities, as compared to non-invasive 
methods like EEG. How well a patient completes a motor task or communicates with an external device depends on how 
well they perform. For patients who are unable to leave their homes, invasive modalities may be an option because the 
potential gains (a vastly enhanced quality of life) justify the potential drawbacks of implantation. After a year of 
observation, the pilot study's subjects showed no signs of surgery-related or tissue-reaction-related complications. 
Individuals with otherwise-normal neurological systems are often discouraged from having invasive BCI because to the 
hazards involved with surgery.  

However, external auditory recordings from non-invasive modalities may be better explained with the use of invasive 
measurements and the usage of spatially explicit inner cortex movements. Considering the underpinning cortical-
subcortical networks is crucial to improving BCI performance, which is influenced by a wide variety of factors. The ideal 
places to capture MI-induced signals are in the brain's most active regions, which include primary motor cortex, 
supplementary motor area, the premotor cortex, and the ventral striatum and basal forebrain of the subcortical parts. The 
electroencephalogram (EEG) measures activity in predictor and motor regions, whereas intracortical electrodes capture 
signals from the brain stem and thalamus. 
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BCI efficiency may be severely hampered by a number of problems. To get reliable results from non-invasive long-
term recordings, the signal-to-noise ratio must be kept above a certain threshold. Brain oscillations triggered by an external 
stimulus are dynamic and stimulated by Resting-State Networks' (RSN) degree of stability [14]. Unreliable RSN 
estimation is caused by time-variant psychophysiological, neuroanatomical, and user-basic trait variables, leading to long- 
and short-term signal variance in and across people. For BCI devices to work, users must undergo a laborious and 
frequently irritating calibration exercise due to these inherent signal fluctuations. The principle of inter-subject 
associativity might be utilized toward inter-subject operable BCI, eliminating the need for subject-specific training, as 
shown in prior research in the situation of natural sight and natural musical listening.  

Recent research suggests that people with similar brain dynamics may soon be able to use a BCI based on their sensory 
rhythms to communicate with one another. Inter-subject BCI offers the greatest potential for healthy persons and software 
for tireless monitoring, lie detection, and gaming, but the rehabilitative BCI should account for the degree and 
characteristics of certain impairments. Transfer training might aid in reducing the impacts of session-to-session and 
subject-to-subject differences by employing systems trained on data from different individuals to take advantage of 
similarities and reduce training demands. 

 
III. CHALLENGES 

Neurological and Psychophysiological Challenges 
BCI performance varies significantly across and among individuals on account of factors including psychological and 
emotional processing, neurophysiology connected to intelligence, and neurological characteristics (i.e., architecture and 
functions). Dynamic brain activity in the present is affected by a variety of personal and contextual variables, including but 
not limited to the user's attention, memory load, weariness, and competing cognitive processes, and their fundamental traits 
like lifestyle, gender, and age. Individuals with poorer empathy, for instance, have stronger ability to generate P300 waves 
of larger amplitude in a P300-BCI scenario and exhibit less emotional engagement in the task overall. Results on the P300-
BCI are also correlated with levels of intrinsic motivation. 

Resting-state physiological factors, such as frequency-domain properties of heart-rate variability at rest, are correlated 
with BCI performance alongside psychological attributes. The benchmarks of RSNs are also dynamic, meaning that they 
may instantly change the look of any cortical signature. The reactivity of sensory neurons (RSNs) and the cognitive 
processes they're linked to change as people age. When RSN effects mask cortical reactions to events, it becomes more 
challenging to adjust to RSNs that change over time. Furthermore, the functioning neural networks are influenced by the 
intrinsic complexity and variety of human brain development, which in turn creates highly variable neuronal connection 
over time and between persons. More generalized systems can only be made possible with a BCI that can withstand the 
inevitable physiological changes that occur over time. 

Research linking to the performance of BCI with psychological, electrophysiological and neuroanatomical aspects has 
shown a correlation between gray matter density in somatosensory cortical areas and BCI success. Research into 
sensorimotor rhythm-based BCI has shown correlations between physiological metrics e.g., spectrum complexities and 
energy spectral density from BCI performance and EEG recordings [15]. Additionally, sensorimotor rhythm-based BCI 
effectiveness is correlated with psychological factors like focus and drive. The degree of corticospinal excitability may 
also serve as a valid indicator of BCI efficacy. By considering the human skull as a whole, BCI performance is improved. 

There are between 15 and 30 percent of the population whose brains just cannot generate the strong enough impulses to 
run a BCI. BCI ignorance might be reduced by learning more about neurophysiological processes. The problem of BCI 
ignorance might be mitigated with the use of an adaptive machine learning strategy that takes into account 
neurophysiological and psychological characteristics. Users' inability to generate signals is only one of several factors that 
contribute to their lack of BCI knowledge. Sometimes technical constraints prevent necessary characteristics from being 
extracted for effective BCI functioning. For instance, a person's unique brain anatomy, such as a folded cortex or a large 
distance from the scalp to the cortex, may prevent reliable task-specific signals from being recorded using scalp 
EEG/MEG. 

More case-specific investigation into the neuro-psycho-physiological variables impacting BCI performance is urgently 
required. Stroke survivors need precise localization of the lesion in order to get optimal rehabilitation, since brain 
responses vary depending on their precise anatomical position. Although current neuroimaging techniques are helpful in 
identifying stroke lesion areas, rehabilitative therapies need a case-specific BCI architecture that takes into account 
remaining brain function. The widespread implementation of BCI-driven therapy for neurological diseases is hindered by 
its highly personalized design. 
 
Technological Challenges 
Although not all BCI applications benefit from any particular method for detecting cognitive signatures, some have been 
proposed. These methods include steady-state visual evoked potential (SSVEP), auditory evoked potential (AEP), event 
related potential (ERP), motor imagery (MI) and somatosensory evoked potential (SSSEP). ERPs and SSVEPs, for 
instance, are able to zero in on a specific target and elicit a response; When ERPs are evoked only by visual stimulation, 
however, they cannot be utilized for interactivity by patients who are physically restrained and have visual processing 
impairments. If the ability to process sound is unaltered, an ERP might be performed. The SSVEP technique provides the 
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fastest data transmission speed for an EEG-based BCI that does not need invasive brain surgery. The SSVEP method has 
its drawbacks, such as the potential for eye strain from prolonged exposure to a flickering display.  

The control signal in this method may be random and counter-intuitive, but this may depend on the specifics of the 
experiment. To use an SSVEP-based BCI speller, one might stare at the letter "A," which flickers at a rate of 10 hertz. In 
order to interrelate with a computer, the control message is typically arbitrarily mapped, so that no particular significance 
is attached to the fact that "A" is correlated with 10 Hz. The ability to explicitly map brain signals related to a given task is 
a significant benefit of a MI-based BCI. MI, however, appears too sluggish for action control, making them unsuitable for 
operating VR environments or videogames. Recent proposals for hybrid BCIs, such as SSVEP/ERP and SSVEP/MI, 
which combine the use of multiple fingerprints, seem to provide more robust capabilities. Poor performance persists even 
when asynchronous BCI is considered, in which the user decides to stimulate an instruction only when absolutely essential. 

Challenges to developing effective BCI systems stem from the brain's inherent neurophysiological instability. The 
brain-computer interface (BCI) consists of three main parts: the sensor, the processor, and the effector device (see Table 1 
for further descriptions). Neuroimaging techniques have been used in numerous attempts to measure the automated or 
hemodynamic annotations of cortical activities, but none of these efforts has yet demonstrated commercial viability for a 
BCI system, which accomplishes the four vital requirements of affordability, portability, minimum maintenance, and 
negligible surgical treatment. When compared to other data logging modalities, EEG-based BCI more closely meet the 
aforementioned requirements (see Table 1). 

 
Table 1. Requirements for EEG-based BCI 

EEG-based BCI Requirement 
Signal 
Acquisition 

Signal acquisition is the method used to measure brainwaves using a certain sensor modality (For 
instance, fMRI may detect metabolic activity, as can scalp or brain sensors for electrophysiologic 
operation). The signals are enhanced by an amplifier to enable electronic processing (and they could also 
go through filtering to get rid of electrical interference or other undesired signal features, such 60-Hz 
power line disturbance.). The digital signal is received by a computer. 

Feature 
Extraction 

The phrase "feature extraction" is used to describe the action of assessing digitalized signals to retrieve 
insightful signal features, such as signal properties linked to an individual’s objectives, from the noises 
and determine them in a compact form suitable for translating into an output instruction. Strong 
correlations should exist between these features and the user's intended outcomes. Due to the transient or 
oscillatory nature of most of the significant (i.e. strongly linked) brain activities, the most extracted signal 
features currently. The BCI process integrates time-oriented ECoG or EEG response latencies and 
amplitudes, intensity within a particular ECoG or EEG frequencies, or the rates of discharge of individual 
cortical neuron. Reliable measures of brain signal parameters are obtained by eliminating or reducing 
environmental and physiological aberrations, such as electromyographic signals. 

Feature 
Translation 

The characteristics extracted from the signal are then sent into features translating techniques that 
translate them into insightful instructions from the output device. A decrease in power in a particular 
range of frequency might amount to an upward shift of the cursor, and P300 prospective might be 
employed to select the letter linked with it. For the users’ available range of feature value to integrate the 
range of device controls, the translation approach needs to be flexible to react and accept to learnt or 
spontaneous changes in the signal characteristics. 

Device 
Output 

The features translation system issues instructions that cause the external device to work, allowing the 
user to do things like pick letters, control a robotic arm, move a cursor, and so on. The users obtain 
feedback on the device's performance while it operates, completing the feedback loop. 

 
EEG's non-invasive scalp recordings give it lower spatial resolution than fMRI but superior temporal resolution. While 

high density EEG modeling improves spatial resolution, it comes at a high supercomputing cost and requires extra work to 
keep the signal-to-noise ratio acknowledge in different channels. Considering that electroencephalography (EEG) only 
records brain activity linked with an electric field, BOLD (blood-oxygen level-dependent) activity evaluation in parallel 
might enhance the performance of BCI. The fMRI is normally employed to capture the activity of BOLD; nonetheless, this 
approach is impractical for most BCI application because of their larger size and high cost. With its lack of invasiveness, 
portability, and low cost, functional near-infrared spectroscopy (fNIRS) is a viable alternative to other neuroimaging 
methods for capturing BOLD activity. Despite the slow information transmission rate caused by hemodynamic delays, 
classification performances can be greatly improved by integrating fNIRS with EEG. A recent study found that fNIRS 
alone does not provide sufficient performance, but that it can be merged with EEG to improve results. However, ongoing 
technological advancements may ultimately establish fNIRS as the gold standard in neuroscience research and BCI 
development. 

Another significant limitation of scalp-based sensors like EEG is that they cannot probe sources in cortico-subcortical 
networks. The so-called inverse problem, which requires reconstructing task-induced networks, presents a formidable 
obstacle. In order to identify the anatomical basis of MI-oriented sources and boost classification accuracy, EEG data was 
analyzed using a two-equivalent-dipole model. In order to learn more about the sources of MI and how they affect BCI 
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performance, Feng, Li, Li, and Liu [16] posited a wavelet-based source location strategy. Magnetic permeability is 
consistent in the cerebrospinal fluid, the skin, and the skull whereas neuronal potentials attenuate as they travel through 
multiple tissue layers with more complex analytics and varied electrical feature. For this reason, MEG is superior to EEG 
in terms of signal capture quality. However, because the magnetic field generated by the brain is so tiny, MEG requires 
expensive, stationary recording equipment despite providing superior spatiotemporal resolution to EEG. There are two 
main concerns that need to be addressed in the design of the BCI classifier. First, depending on the classifier's features, the 
number of measurements of the functionality set used to calculate the prototypes variables should be determined for best 
performance. Second, it is important to think about the bias-variance trade-off, which may require regularizing the 
parametric estimation. 

When the features taken from the training set are different from the features in the test set, a phenomenon known as 
covariate shift occurs, which negatively affects classification accuracy. For the compensation of feature space transitions 
due to covariate shift, adaptive approaches are needed. With the unsupervised subdomain learning approach, data may be 
shared across subjects and sessions to improve BCI functionality. In both online and offline BCI applications, the typical 
geographical patters, the supervised strategy, has seen widespread usage. When adopting such a data-driven approach, it is 
easy for the model's parameters to become over-fit to the training sets, leading to inaccurate predictions being made when 
applied to the test data. Recent research has included a wide variety of methodologies into prospective transfer learning 
models for BCI, e.g., spatially filtered (such as typical spatial patters), Euclidean alignment, domain adaptation, 
Riemannian geometries and deep learning-based approaches. 

 
IV. NEUROPLASTICITY, SIGNAL PROCESSING, AND APPLICATIONS  

In order to create a functional BCI, it is necessary to take advantage of neuroplasticity, construct high-fidelity and 
individualized brain sensors, use sophisticated signal processing, and use machine learning strategies. Signal collection 
mode, experimental methodology, data processing and pattern classification, application area, and importance are only few 
of the features of BCI infrastructure and applications. 
 
Neuroplasticity and Cognitive Rehabilitation 
Nikolaidou et al. [17] originally showed that the brain's adaptability is anchored in the time-varying dynamics of synapses 
within large neural networks. Neurorehabilitation relies heavily on neuroplasticity because of its role in facilitating 
cognitive and perceptual development. The success of a neurofeedback method to produce desired activity patterns may 
hinge on the degree of plasticity of the target brain region. There is evidence that the visual cortex is malleable enough to 
generate strong neural signals for perceptual learning after biofeedback. Differential alpha activity between the right and 
left hemispheres during neurofeedback training has been linked to visual data processing and motor movements, 
suggesting that these differences govern spatial attention. Functional MRI (magnetic resonance imaging) is used in 
neurofeedback training sessions to bring about changes in attention-related behavior. Clinical implications imply that 
neurofeedback may be useful in the treatment of attention deficit. Recently, Azarpaikan and Taheri Torbati [18] have 
employed neurofeedback to induce strong somatosensory oscillations, which are linked to human perception. 

Closed-loop BCIs in conjunction with neurofeedback have been shown to be effective in re-organizing cortical-
subcortical neural network models and teaching people to self-regulate particular brain rhythms, although the processes 
behind these modifications to neural substrate is not critically comprehended. One of the example include the covert visuo-
motor training using a brain-computer interface (BCI), which modifies connected neural substrates, the consequences of 
which are seen during the relevant motor task. Extensive research on the efficacy of brain-computer interfaces (BCIs) has 
demonstrated that they may facilitate considerable learning in overt movement-related activities, suggesting that BCIs play 
a vital role in enhancing increased motor learning needed for effectively operating neuro-prosthetics. For example, intra-
cortical electrode can be integrated to enhance particular motor-control parts of the brain. Restoring control of tissue 
engineering or upper limb functions may be possible via training-induced neuroplasticity, which BCI may help by re-
exciting the relevant neural substrates during therapeutic motor rehabilitation. Similarly, a brain-computer interface 
operated exoskeleton might boost worker efficiency. 

Several factors influence the extent to which a BCI induces plasticity. These include (1) the choice of image acquisition 
modality, which is essential for analysing neural signals, (2) the model of input treatment approach that has clear and 
specific relationship with the neural message categorization findings, (3) the evaluation of application-based response 
interruptions, and (4) the application of effective feedback method of treatment. The use of many signal collection 
modalities, including functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and 
magnetoencephalography (MEG) has led to a shift from single-unit recordings toward recordings of brain ensembles. 
Since behavioural actions are linkely to be distributed spatially in the entire cortical-subcortical systems, it is doubtful that 
single unit recordings will be able to catch them all. 

Utilizing and promoting neuroplasticity is the purpose of rehabilitative BCI. This may be done in a variety of methods, 
such as by attaching neural prostheses to a body part that has been damaged or by re-stimulating the synaptic networks that 
were destroyed. For stroke patients with paralyzed muscles and no remaining finger movement, therapy using BCI-driven 
orthoses displays enhanced neuromuscular coherence that is fundamental for restoring the controls of movement. BCI may 
also play a role in rehabilitation via the use of functional electric stimulation controlled by movement-related signals 
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derived from electroencephalography. There is evidence of plasticity generated by electrical stimulation in paretic muscles, 
as measured by increased electromyographic activity. Controlling the prosthetic or stimulation modality in BCI-based 
rehab in a real-world setting relies heavily on distinguishing between task-induced and resting-state activities. 

The use of electric or magnet fields to activate the affected parts of the brain from the outside is an effective approach 
as a stroke rehabilitation therapy. Neuroplasticity within the white matter and the cortical procedures after prolonged 
stroke was induced using functional magnetic resonance imaging and transcranial instantaneous current stimulation. 
Cortical activity may be enhanced in stroke patients through the use of electrical stimulation of particular brain areas 
regulated by a brain-computer interface. Training must be individualized because of the wide range of post-rehabilitation 
neuroplasticity. Motor rehabilitation through a brain-computer interface is challenging to accomplish for patients who are 
unable to interact with the device. Furthermore, BCI-driven rehabilitation has been used in the fields of transcranial 
magnetic stimulations for the diagnosis of critical depressive disorders and the optimizations of deep brain stimulation 
environments for Parkinson’s disease patients. 

Patients with illnesses such ALS (Amyotrophic Lateral Sclerosis), spinal cord injury, downs syndrome, brainstem 
stroke, chronic peripheral neuropathies and muscular dystrophy could benefit from BCI either through the absolute 
authority of assistive technologies or through direct neuro-stimulations.  The quality of life for persons with impairments is 
greatly enhanced when supplementary degrees of freedom are made available to them. Wheelchairs might be controlled by 
thought alone. A tetraplegic patient was able to successfully complete the grasping challenge with the help of a prosthetic 
limb thanks to the incorporation of BCI initiatives and a vision-based autonomous framework. There has been talk of 
controlling 3D neuroprosthetics using an implanted microelectrode array. 
 
Signal Processing, Signal Acquisition, and Modeling 
Many new investigations are looking at how to improve existing BCI systems by merging different kinds of signal capture. 
By taking use of the superior temporal precision of EEG and superior spatial resolution of fMRI, simultaneous methods 
like these may provide complementing features. Hybrid EEG/fNIRS signals improved classification performance on 
multiclass sensorimotor tasks, suggesting the significance of characteristics collected from both hemodynamic and electric 
activity. Combining MEG with EEG is a viable option since MEG may record dipole origins in cortical-subcortical 
networks, providing valuable context for EEG readings. While some may still be skeptical, a growing body of research 
suggests that EEG and MEG may pick up brain processes that originate in the brain's subcortical regions. Recent efforts 
have focused on maximizing BCI performance by integrating several signal collection techniques. 

The ability to convert brain signals into commands for computers and other devices relies heavily on the marriage of 
signal processor and machine learning techniques. Understanding the physiological significance of BCI findings requires 
representing the signals within a time-frequency spacing. The FT (Fourier Transform) and vector auto-regression 
modelling are some of the deployments within the time domains, whereas the time-frequency models short-time FT as well 
as the wavelet transform are deployments in the time domain. Generally speaking, the Laplacian filter, independent 
components analysis, and the common geographic distribution are the most well-liked methods of spatial filtering. The real 
sources projected onto the 3D cortical-subcortical systems may be identified using a wide variety of inverse theories. 
Several different linear and non-linear categorization techniques may be used to interpret the extracted characteristics. 
Linear discriminant evaluation and SVMs (Support Vector Machine, non-linear kernel-oriented) are two examples of 
classifier models that may be thought of as either linear or non-linear. 

Since its first publication in the year 2000, common spatial structure has been frequently utilized to characterize 
multichannel EEG data including spatial components. As a data-oriented approach, it necessitated a larger number of 
learned cases in order to determine the parameters of screening. Regularized covariance estimation has the potential to 
outperform the traditional method when working with a small sample size of training data. Electroencephalogram (EEG) 
data projection through spectral division and sparse representation of raw signals by filter banks are two examples of how 
spatial filtering has been modified. In general, geographical filtering works well in subject-oriented BCI enhancement, 
even if prior researches have advised using a subject's data to derive the filter parameters and then applying those 
parameters to a subject who did not provide a training sample. There are several well-known data-oriented approaches, 
e.g., SVMs, LDA (Linear Discriminant Analyses), and PCA (Principle Component Analysis).  

Due to extraordinary advancements in computer capacity over the past year, deep learning BCI frameworks, which 
facilitate the assessment of big data, might soon become trendy. In contrast, autonomous analytical approach is a non-
supervised technique for separating sources. When estimating the components of a signal independently, we rely on the 
signals' innate statistical properties. However, the true cortical inputs are modeled as polarisation in the complex brain 
architecture, a method that aims to mitigate the inverse issue. One of the most recent techniques for source localization, 
wavelet-oriented maximum entropy on the mean-first convert EEG and MEG data into geographical representations by 
representing the signals as significant time-frequency contents. Variation in localized sources is especially noticeable when 
comparing results from various inverse algorithms and toolboxes. Knowing the precise sources that need to be modelled 
using EEG/MEG is also not easy. For instance, due to sparse (spatial) sampling, the ground truth founded by electrodes 
that have been implanted might not be completely trustworthy. This is because fMRI is an indirect method of measuring 
brain activity. Despite this, inverse approaches have shown a great deal of promise in the development of several BCI 
models. 
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State-of-the-Art for Neurosensors 
Multiple neuronal actions get support from deeper brain areas, such as the subcortical and cerebellar regions. 
Understanding the cells to scalp layers and RSNs scattered over the brain's 3D space is crucial for guiding BCI 
development. Customized sensors are being created to improve brain signal collecting methods. Electrical, optical, 
chemical, and biological components may all go into the building of a neurosensor. It is widely held that the signal-to-
noise ratio of the dry EEG sensor is inferior to that of its wet equivalents, despite the fact that they are more convenient to 
use. Wet electrodes utilize conductive gel and necessitate the skin to be appropriately prepared to decrease the skin-
electrode impedance, which might be problematic for certain users. However, research into BCIs that employ dry 
electrodes has shown that, with some careful circuit design, these electrodes may be used to capture high-quality data.  

More research is needed to support the use of dry electrodes with wirelessly devices that might provide the same signal 
quality as wet electrodes. Taking use of the mechanical qualities of polymer, quasi-dry electrodes may collect signals at a 
level equivalent to commercial Ag/AgCl electrodes, combining the best features of both types of electrodes. Rolfe [19] 
have developed an ultra-dense sensing model of 700 to 800 electrodes to enhance EEG's spatial resolution. There was a 
twofold improvement in signal-to-noise ratio against high-density EEG, which may employ up to a maximum of 256 gold-
coated sensors. It was suggested that an auricle electrodes with a stretchy connection might not only make recordings more 
convenient but also more mobile. As the skin's electrical and mechanical qualities change, so does the electrode's ability to 
adapt. 

Biocompatibility is a need for invasive sensors. Sensing neural impulses from the brain's outside is now possible thanks 
to an unique organic electrochemical transistor-based sensor. This sensor has a far better signal-to-noise ratio than standard 
ECoG because its transistor-based construction enhances recorded signals locally. This sensor is physically malleable and 
is safe for biological use. The signal quality may be improved by covering the electrodes with carbon nanotubes, which 
reduces their resistance and increases charge transfer. Another invasive biocompatible device with data transmission is 
being developed to record spectra of vast neuron populations that have been unavailable till now. 

Due to remarkable developments in nanotechnology, nanowire Field Effect Transistors as well as other p/n junction 
devices may soon be used as a neuro-sensing approach for the intra-cellular recording, even within the deeper regions of 
the brain system. Invasive stent-electrodes arrays (stentrode) have been suggested by Strokov, Schander, Stemmann, 
TeBmann, Lang, and Kreiter [20]. Stentrode placement into brain arteries and veins is possible with the use of computer-
guided catheter angiography. With this technique, the risks associated with craniotomy may be greatly reduced because of 
the high-fidelity cortical impulses it captures. Recent research confirms the strentrode can be implanted in people to record 
brain signals over an extended period of time. Strentrode-based BCI had a similar rate of information transmission as 
Iredale et al.' [21] seminal work using implanted electrodes. Access to neural data may also be obtained wirelessly by 
means of an entrenched ECoG plotter dubbed Wireless Implantable Multi-channel Acquisition system for Generic 
Interface with Neurons (WIMAGINE). Long-term dataset collection reliability and craniotomy risk have both recently 
been assessed on the WIMAGINE. 

Small-scale neuronal activity recording are essential for studying the activities and intra- and inter-neurons interactions 
in brain circuits, alongside large-scale recording models such as MEG and EEG. To move neuroengineering and BCI 
further, it is essential to represent every cognitive process as a function of both local and global neural connections. A 
high-density array of silicon probes serves as a neurosensor, and optogenetics allows for single-unit recordings in this 
context. A unique multi-plane two-photon microscope was suggested, which would allow for the cellular-level capture of 
multi-layer neuronal architecture and process. Calcium imaging and improved microscopes with chronically inserted 
lenses are two more imaging techniques that might be used to study cell signaling. With the use of designer receptors that 
are only triggered by designer medications, Eroğlu [22] now have a powerful chemogenetic tool with which to study cell-
signaling processes, such as electrical activity in molecularly clustered groups of cells. Millimeter-scale recordings of 
electromyograms and electroneurograms are now possible thanks to a novel ultrasonic-based wireless device termed neural 
dust. 
 
Complex Computing, Robotics, Gaming, and Miscellaneous Applications 
Computer systems in the future are thought to acquire psychological and perceptual skills, which would boost their usage 
beyond only supporting people and into decision-making. Using data from the body and the mind, computers may soon be 
able to identify and make sense of people's true feelings. Recent research has shown that brain-computer interfaces (BCIs) 
may be utilized to evaluate complex states, extending its use into the field of psychology. Paranjape, Dhabu, Deshpande, 
and Kekre [23] propose a BCI oriented on EEG, which can identify whether a given visual input elicited a favorable or 
negative emotional response. 

As a subset of BCI, "artistic BCI" refers to the practice of incorporating creative expression into the technology. David 
Rosenboom started exploring neural correlates of musical creativity, form recognition, and bodily musical awareness in the 
late 1960s. Affective state detection, video gaming, and virtual/augmented reality environment control are further instances 
of creative BCI. In a number of studies, Martišius and Damaševičius [24] have shown that the SSVEP-BCI may be used to 
control a video game entirely. The concept of a cooperative game, (in which numerous players work together to make 
decisions about the game's state), has been the subject of other research. As was shown in a different research, the 
combined brain signals of two intelligence analysts may be superior to those of a single analyst when it comes to making 
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important decisions. The reason for this may lie in the fact that people vary in their level of intelligence and their ability to 
perceive the world around them. User collaboration with an emphasis on diversity and inclusion may aid in decision 
making for individual users. Expanding the use of BCIs in sociology, a tweaked arrangement might examine how 
individuals interact in a variety of social circumstances. 

A combination of BCI and V/AR technologies has the potential to provide immersive experiences with several 
applications, such as in the arts and neurofeedback. By reading brain signals, a user may create a virtual canvas on which 
to draw a line, opening up a new form of communication for those whose motor abilities have been compromised. They've 
created a VR brain painting program. An additional piece of study has shown the potential of VR-BCI for measuring 
cognitive burden in the service of neuroergonomics. The employment of virtual reality (VR) has been studied as a viable 
neurofeedback alternative to the traditional computer screen, with positive results for BCI precision. Spicer, Anglin, Krum, 
and Liew [25] have developed a platform for motor rehabilitation called REINVENT that combines VR and BCI concepts. 
In a similar vein, BCI combined with AR may be employed to operate robots remotely to aid in the rehabilitation of 
children with attention-deficit/hyperactivity syndrome. 

BCI-driven robotic controllers provide cutting-edge assisting technology for those with mobility constraints, and may 
significantly improve human ergonomic performance in healthy participants. Mobile robotic or wheelchair controllers 
powered by BCIs based on EEG data have shown the technology's promise in the robotics sector. In dangerous 
circumstances, such as sending robots into coal mines to carry out a job that may be harmful to a person, a BCI can be 
utilized to manage the robot remotely via EEG. To track astronauts' energy levels and power an exoskeleton, BCI has 
potential applications in space. Work becomes more difficult and uncomfortable without gravity. At addition, astronauts' 
time in the office is invaluable. The use of BCI-powered technologies to enhance astronauts' performance, productivity, 
and safety is a plausible future goal. 

Experiments with brain-to-brain interfaces (BBIs) have been conducted recently, with the goal of translating a sender's 
mental state into a set of instructions for stimulating a recipient's brain. A direct BBI device was built in 2013 to allow one 
rat to transfer sensorimotor data to another rat. The intended brain regions of the recipient were stimulated using 
intracortical macrostimulation. In an early effort to create BBI between two human individuals, Lee et al. [26] suggested 
using non-invasive EEG and transcranial magnetic activation to produce sensorimotor rhythm-based BBI. Many other 
proposals for completely non-invasive BBI investigations include human participants exchanging and decoding words 
encoded in pseudo-random binary streams while playing cooperative games. 

Regardless of the scientific progress made in the area, the advantages to users and societal consequences of BCI 
research should be maximized by taking into account key aspects pertaining to security, ethics, confidentially protection 
and information secrecy, community acknowledgment, and economic considerations. BCI Researchers may have trouble 
communicating with patients wearing BCIs and gaining their ethically sound informed consent. There should be a greater 
focus on ethics policies and a heightened level of public understanding to increase the likelihood that patients will receive 
sufficient data. 

BCI users' psychological and bodily well-being must be prioritized. Deep brain stimuli and intracortical microelectrode 
variety are examples of invasive procedures that can have lasting psychological and neurological effects in the 
postoperative period. Also, the implanted sensors may need to be removed or maintained if bleeding or diseases occur. 
Guidelines are required to ensure the safe development of neurotechnology’s like BCIs, which might affect behavior and 
pose risks to an individual's emotions, personality, and memory. By considering the importance of responsible application 
of this technology, one can establish a ceiling for the scope of studies involving human brain-to-brain interface requests. 
Because of the multifaceted roles played by both the sender and the receiver, the intended result may be affected by the 
sender's deliberate manipulation of brain signals. Ethical concerns concerning improving human cognitive and maybe 
moral ability are raised by the lack of knowledge about the reversibility and effectiveness of the cognitive alterations. 

In addition to the unknown risk factors, which can reduce the benefit of using BCI, users may be disappointed when 
they fail to achieve the additional or extended degrees of freedom they had hoped for. People who worry about becoming 
too reliant on technology could benefit from education about BCI technology if it were more widely disseminated. It is 
critical, however, to perform robust clinical investigations of cutting-edge devices like strentrode and WIMAGINE in 
order to establish their potential advantages, particularly for those with cognitive impairments of any kind. Large-scale 
adoption among healthy consumers should not be too challenging to obtain given that EEG electrodes might allow long-
term method of a BCI setup with minimum maintenance. 

For BCI to be used legally and for personal information to be protected, a lawful framework must be put in place. 
Recently published research has shown that consumer-grade BCI may be used to decode passwords or recognize faces, 
raising concerns about unauthorized access to and usage of users' raw data. A user's emotional and moral dispositions are 
shaped by their affective moods. Therefore, it is crucial to restrict the uses of emotional BCI in order to protect private 
data. To prevent unauthorized users from gaining access to sensitive information or breaking the system, preliminary 
efforts should develop application-specific BCI frameworks. Recent occurrences, such as the illegal usage of a wireless 
BCI-oriented limb and the manipulative reconfigurations of computer-aided neuro-stimulations, have underlined the 
requirement of defining effective safeguards to the employment of BCI.  To ensure that a user's private data remains 
private, cryptographic methods have been suggested as built-in features of BCI. The advancement of BCI would be slowed 
if the commercialisation of BCI occurred before social, economic, ethical, and policy concerns were thoroughly examined. 
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V. CONCLUSION AND FUTURE RESEARCH 
Building a common network infrastructure for Brain-Computer Interfaces (BCI) researchers throughout the world is 
essential for speedy creation of a full list of universal principles, which is crucial to continued progress in the domain of 
BCI. In order to further our understanding of the nervous and the brain system, these researchers have formed alliances to 
work on projects together e.g., the Human Brain Initiative, which is a joint European Union and university effort. The 
White House has also made an announcement on an initiative called the Brain Initiative. The design, performance, and use 
of BCIs of the future will depend, in our view, on our increased knowledge of fundamental neuroscientific processes. 
Recent developments in computational tools and neuro-sensors provide a significant insight for developing BCI devices 
that need minimal maintainability and are easy for their users to learn to use. In addition to improvements in high-fidelity 
signal collection, developments in signal processing and machine training techniques, as well as increases in computing 
mobility and power have all had a significant impact to the development of BCI technology. However, addressing these 
crucial issues is crucial for the development of BCI technology in the future. (i) Determining what psychological and 
physiological variables may have an effect on BCI accuracy. (ii) Creating less intrusive sensors that nevertheless acquire 
and resolve signals reliably while also being portable, low-maintenance, and inexpensively. (iii) Simulating how data 
moves between sessions and across people, such that more generic BCI models may be proposed with little or no 
calibration, and (iv) Building widespread agreement on how to responsibly use this technology to the social and economic 
realms. 
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