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Abstract – In this article, we describe a data analytics methodology for gleaning insights from the production lines of a 

power transfer unit, such as the critical measurements needed to construct a shim used to align shafts. This study also 

outlines the most effective methods and analytical methodologies for domains used in determining which measurements 

are afflicted by faults; determining which measurements are afflicted by shim dimensions; determining which 

relationships exist between station codes; forecasting shim dimensions; determining which duplicate samples are present 

in faulty data; and determining which error distributions are afflicted by measurement. Both statistical analysis and 

analysis based on machine learning (ML) are used to these domains. These findings demonstrate the reproduction rate of 

defective units, the relative significance of measurement in relation to the shim dimensions, error distribution and faulty 

units of measurements. The 'PTU housing measurement' was shown to be the most critical measurement out of all the 

shim dimensions by both statistical and ML-based analyses. 

 

Keywords – Power Transfer Units, Data Analytics, Big Data, Machine Learning, Artificial Intelligence, Housing 

Measurement. 
 

I. INTRODUCTION 

Sensors may generate big data on goods, designs, and materials; nevertheless, it is crucial to make use of accurate 

information for the proper reasons. To reduce defective goods and get insight into the manufacturing process, 

manufacturers of power transfer units are required to conduct a thorough evaluation of data retrieved from several sensors 

in assembly and production lines. Also, manufacturers must choose the most appropriate methodologies while picking 

analytical methodologies. Nowadays, with the proliferation of high-tech sensors made possible by the Internet of Things 

(IoT), cyber physical systems (CPSs) capture a massive quantity of information, or "big data". Nonetheless, just a fraction 

of the data that exists is utilized at now, and much of that data is never put to any use at all. Data analytics reliant on real-

time and historical data for fault prediction, estimation of production cost, fault detection, and other purposes allows smart 

manufacturing. By utilizing big data and analytics, regular industrial maintenance may be converted into predictive 

maintenance. Predicting the health state of a machine using both current and past data allows for continuous health 

monitoring. Predictive maintenance is one use of ML technology. Manufacturing has been given a new lease of life thanks 

to data-driven ML methodologies. 

Manufacturing involves large-scale fabrication or assembly of raw materials into final goods. According to Han, Zhou, 

Liang, Li, and Zhu [1], it is a crucial sector of the global economy, contributing around 16% of GDP in 2019 and yielding 

a total worldwide production of $13.9 trillion. The efficient production of a large quantity of high-quality goods while 

keeping costs down is a crucial industrial objective. Nonetheless, if a company lacks the resources and equipment 

necessary to create and manufacture high-quality items, producing such products may be an extremely costly and time-

consuming operation. The evolution of manufacturing over the past few of centuries is nothing short of remarkable. 

Manufacturing companies in the 18th century sought out machinery to replace human labor in production, ushering in the 

era known as the Industrial Revolution. The Fourth Industrial Revolution or "Industry 4.0” encompasses three technical 

trends—intelligence, connectivity, and flexible automation—that aim to further computerize industry. 

The advent of Industry 4.0 has ushered in a new era of analytics in manufacturing, introducing the era of "Smart 

Manufacturing." Some of the Smart Manufacturing domain's attributable components are shown in Fig 1. The domains 

represent a method that relies heavily on technology, namely the Internet of Things (IoT) and other linked devices, in order 

to manufacture products and keep tabs on operations. It seeks to automate industrial processes in order to improve 
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efficiency, supply chain management, sustainability, and the detection of potential system obstacles before they 

materialize. When machine learning and artificial intelligence (AI) are applied to manufacturing data, businesses may 

increase the efficiency of both individual assets and the whole product maintenance process (see Fig 2). 

 

 
Fig 1. Segments of smart manufacturing 

 

 
Fig 2. Applications of artificial intelligence and machine learning in the industrial sector 

 

In this paper, we look at how the shim dimensions are affected by various measurement factors (such the 'PTU housing 

measurement'), statistical analytic techniques (like correlation) and ML algorithms (such as support vector regression). 

Linear regression and random forest regression) have been used to determine which shim-related metrics are the most 

important. In addition, the information may be utilized to pinpoint which metrics are most to blame for a malfunctioning 

device. Prediction of shim dimensions and correlations between station codes are also explored. The error dispersion of 

assessments and the replication rate of the defective unit are also examined. The optimum methodology to the 

aforementioned domains is determined by contrasting statistical analysis with ML-based analysis. The rest of the paper is 

organized as follows: Section II presents an analysis of data collection and analysis of the power transfer unit, dataset, and 

data analysis. Section III provides an overview of the methodology of data analytics. Results are critically discussed in 

Section IV, while final remarks are offered in Section V.  

 

II. DATA COLLECTION AND ANALYSIS 

Power Transfer Unit 

A Power Transfer Unit (PTU) [2] refers to a model, which has the capacity to transfer power from the engine to the 

drivetrain. To do this, two gears or cogwheels are used. These two gears are crucial to the PTU's operation, and their 

improper placement causes vibrations and noise. Shims are employed to bring these two gears into proper alignment. Ford 

Power Transfer Units (PTUs) are now available for replacement at Transtar. The PTU is a kind of All-Wheel-Drive 

(AWD) [3] transfer case seen in automobiles and SUVs. It may send torque to the rear wheels alone, to the front wheels 

only, or to both sets of wheels at the same time, depending on the road conditions. 
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Dataset 

Measurements taken on a production line producing PTUs comprise the dataset used in this investigation, which was 

gathered from the database of a manufacturing firm's logistics in-production network. There are a total of 151,342 built 

units; however the operator has tagged 6,488 of these as "faulty" owing to measurement discrepancies or improper shim 

dimensions. The dataset contains forty-two metrics for each unit, such as mounting lengths from the gear heights and gear 

housing. There is a unique manufacturing date and serial number for each item. The data was gathered at a number of PTU 

stations, each of which has its own unique station code. In addition, the STATION fields were left blank for good samples 

and colored red for bad ones. 

 

Data analytics 

According to Kulkarni, Kumar, and Rao [4], the phrase "data analytics" is quite general and may be used to refer to a wide 

variety of methodologies to data analysis. The technique of data analytics could be employed to the different formats of 

data to provide insights that could be put to good usage. The metrics and trends could be revealed using these methods of 

data analytics, which might otherwise be witnessed by the massive volumes of data. Based on this understanding, systems 

and businesses may effectively streamline their daily activities, resulting to improved efficiency. By tracking machines' up- 

and down-times and the number of jobs waiting to be completed, manufacturers can better allocate resources and get more 

out of their equipment. There is so much more that can be accomplished with data analytics than just identifying points of 

contention in the manufacturing process. Companies in the gaming industry use data analytics to create rewards models, 

which keep the most of the played actively-engaged.  

Data analytics are employed by different content designers to keep the players coming back and engaged for more 

clicks and views. The evaluation of big data is fundamental since it permits businesses to effectively focus on the domains 

where they can attain the most success. By incorporating it into their daily activities, businesses can find affordable 

methods do execute business activities and save time by storing big data. Organizational decisions, and customer 

satisfaction development and trends can be evaluated with the assistance of data analytics, amounting to the enhancement 

of novel, and developed offerings. Fig 3 displays the many domains of data analytics that have been explored for this 

paper. 

 

 
Fig 3. Several fields of data analytics 

 

Each defective device has a unique station code, which may be used in Domain 3 to establish a connection between 

them. Dimensions of the shims are predicted in Domain 4, and duplicate samples in the flawed data sets are found in 

Domain 5. 

 

III. OVERVIEW OF THE METHODOLOGY 

Fig 4 depicts this data analytics process in its many stages. Domain expertise, issue definition, data collection and 

preparation, analytics using traditional statistical methodologies and machine learning-based methods, assessment of the 

methodology, fresh insights, and the optimal method are all part of the process. A manufacturing firm's assembly line is 

the first source of domain knowledge, data, needs, and ideas. In most cases, the requirements will dictate how the issue is 

phrased; here, however, the goal is to learn as much as possible about the assembly line and its processes by posing the 

appropriate research questions. The results of the method are also evaluated by extracting and storing domain knowledge. 
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Due to the raw nature of the data, pre-processing was required (including filling in missing numbers and locating any 

outliers). NaN (not an integer) and null data are converted to zeros and missing values were found and supplied using 

imputation at this point. In addition, we explored the data to find outliers and inconsistent cardinality. The cardinality of 

the observations was not one or very low. As a result, the dataset did not include any examples of irregular cardinality. The 

lowest and maximum values as well as the distribution of the data were studied to spot outliers. Unfortunately, there were 

no extreme values in the dataset. At the end, we standardized all of the numbers to a scale from zero to one. The set of data 

was therefore subdivided into training (composed of 80% of data) and tests (comprising 20% of the data) sets so that ML-

based analysis could be applied. 

 

 
Fig 4. Several stages of the suggested methodology 

 

In this work, data analytics were carried out in two stages: (1) statistical analysis was carried out in Stage 1 to analyze 

various data distribution and correlation between various station coding and observations connected with shim parameters 

to discover linkages of (1) ML-based data analysis and within (2) PTU domains was carried out in Stage 2 to select the 

most pertinent measurements and minimize the number of observations. The information gained from these two 

procedures was analyzed and interpreted to provide previously unknown facts about the factory's production process. 

Furthermore, the best strategies for each domain were determined by contrasting Stage 1 and Stage 2. 

Stage 1 of our statistical data analysis was spent investigating and characterizing the dataset. At this stage, we'll look 

for patterns in the error rate and the location where it was made (the "Assembly Station"), as well as the distribution of 

defective parts given the various measurement values and correlations between them. Statistical analysis sheds light on the 

dataset, revealing information such as the relevance of certain measures and the ripple impact of inaccurate readings 

throughout the assembly line's many stations. The target metrics were binned into 100 categories in order to find the 

correlations between the various measures and the error rates. The total number of errors for each bin was calculated, and 

their histogram distribution was examined. 

Experts agree that problems with the 'PTU housing measurements,' a crucial metric, lie at the root of the dataset's 

problems. Faults from distinct stations were associated with the unit code for the 'PTU housing measurements,' applying a 

correlation analysis in order to determine the dimension to which two randomized observations were geometrically linked. 

To estimate the correlation, we first compiled a list of 'PTU housing measurements' station codes and then utilized a matrix 

to determine the cross-correlation of the different codes at the station. The correlation revealed a strong relationship 

between several stations. It was also discovered that the dataset had many instances of the same flawed samples. 

Therefore, the erroneous sampling frequency for the measurements was evaluated for every code at the station, and 

duplicate results matching to a serial number were recognized. 

Stage 2 ML-based evaluation sought to categorize PTU faults, forecast shim size, and establish connections between 

station codes. Fault categorization aids comprehension of the most fundamental measurement, and in the future, it could 

assist forecasting of different values, which should be altered for a precise unit. Station codes 1 and 0 were assigned to all 
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malfunctioning devices and healthy ones, accordingly. To evaluate how well the ML framework without default and would 

fare with hyperparameter settings, the models' hyperparameters were fine-tuned. On top of that, most people just used the 

default settings for hyperparameter tuning, which increased the time it took to build a model by an average of 12 hours. 

Hyperparameter optimization default settings were not modified due to the lengthy optimization procedure and high 

performance. For the same reason, no hyperparameters that could be improved were, with the exception of RFR. RFR was 

tweaked to minimize the gap between the model's anticipated value and the actual value. 

The defective devices were classified by training two support vector machine (SVM) classifiers [5] on the dataset. 

Measurements were ranked using the SVM classifier's coefficient values, and the top-ranked ones were contracted to the 

experts’ recommendations. Both the enhanced and default enhanced hyperparameters were used by one of the classifiers. 

Box standardized data=0, kernel function='linear, kernel scale=1, and constraint=1are the default hyperparameters for the 

classifier. Automatic hyperparameter optimization was used in the development of the second classifier. As "auto" was 

selected for the hyperparameter optimization setting, only "BoxConstraint" and "KernelScale" (two of the available 

parameters) will be tuned. To facilitate replication, we left all optimization settings at their defaults except for one: 

"AcquisitionFunctionName," which we changed to "anticipated improvement plus." A model (a support vector classifier) 

with optimal hyperparameters was developed after 30 iterations. A value of 837.56 for BoxConstraint and a value of 

133.58 for KernelScale are optimally possible. 

Furthermore, multiple ML techniques (SVR, RFR, and LR) were trained to effectively identity the correlation between 

PTU housing measurements, Gear (Pinion) height, and Manual adjustments, and to predict shim dimensions. As hyper-

parameters were not employed in the input data-point fitting, just a single model was trained using the LR technique. The 

formula y = bx + c is considered to describe the relationship between input and output. In SVR, we trained two models, 

one with the hyperparameters tuned, and the second one with default hyperparameters for best performance. Using the 

default hyperparameters (lambda=8.259106, learner=SVM, regularization=ridge (L2)), SVR learned with the linear kernel. 

On the other hand, three hyperparameters (BoxConstraint, KernelScale, and Epsilon) were optimized by setting them to 

"auto" in the optimized model. By default, the optimization option was selected. A regression model with optimal 

hyperparameters was developed after 30 iterations. KernelScale = 0.013568, Epsilon = 0.00022608, and BoxConstraint = 

0.022683, are the optimized hyperparameters. 

One of the models was trained using default hyper-parameters, another was trained with four hyperparameters 

optimized, and a third was trained with all hyperparameters tuned in RFR. These are the hyperparameters used to train the 

default RFR based on the application of bagged ensemble of 200 distinct trees under regression analysis; Use 200 

iterations of ensemble learning, a learn rate of 1, the bag methodology, and all predictors in each split. To optimize the 

following four hyperparameters in the RFR models, we set them to auto: Method, NumLearningCycles, LearnRate, and 

MinLeafSize. There weren't any custom optimization settings, thus everything was left at its default. There were 30 

iterations used to find the optimal values for four hyperparameters in the RFR model. NumLearning Cycles=85, 

Method='LS Boost,' and MinLeafSize=1, LearnRate='0.050891 are the optimal hyperparameters. All the fundamental 

parameters were tuned in the third model. The hyperparameters were tuned to the following values: Method='Bag,' 

LearnRate=NaN, NumLearning Cycles=16, MinLeaf Size=4, NumVariablesToSample=2 and MaxNum Splits= 60006. 

Then, the models were put to the test on the test dataset. 

About 10 sets of rules were obtained based on the application of the Apriori methodology employed on the Weka 

platform to determine the connections between the various stations. By changing the value of the 'vehicle' variable to false, 

class association rules were bypassed in favor of mining general association rules. The rules were ranked using confidence 

values, with a cutoff of 0.9 for inclusion in the ranking. There was a maximum guarantee of 1.0 in terms of minimum 

support. 

 

IV. RESULTS AND DISCUSSION 

The purpose of this paper was to determine the most effective methods for each step of the assembly process and to get 

fresh insights into the assembly line as a whole. To determine the optimal ML model, this research makes use of an 

exploratory validation strategy. Fig 4 describes and evaluates many subfields of data analytics. 

In Domain 1, the manufacturing firm's experts supplied a collection of the most instructive measures that might be 

mapped to defects. As its name suggests, an expert system is a computer program designed to make judgments and 

recommendations with the same level of expertise as a human expert. It mimics human behavior by applying human 

knowledge to situations normally solved by humans. It's a classic case of a system built on information and experience. 

Fig 5 is an example of an ES, or expert system. According to Fig 5, there are three primary stages to an ES: (1) some kind 

of knowledge base, (2) some sort of problem-solving and inferential engine, and (3) some sort of human-machine 

interface.  

Hence, an ES is a smart computer program that takes user input through the user interface and makes logical judgments 

via the inference mechanism based on the information in the knowledge base. Long-term memory (the knowledge base) is 

where the expertise of the specialists is kept. In the knowledge base, you'll find IF...THEN rules, data, and guidelines. The 

old adage goes something like this: "Knowledge is power." It is impossible to find solutions to problems without first 

understanding them in great depth. The role of the knowledge engineer is to write the code required to integrate domain-

specific expertise into the ES. Using the data in the knowledge base, the inference engine makes educated guesses 
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(inferences). The software is what allows for the interpretation of commands and the retrieval of relevant information in 

order to address a specific issue. 

 
Fig 5. Expert System configuration 

 

The first stage's goal was to evaluate the coefficient of correlation identifiable in every 42 STATION and 

measurements. Nevertheless, it was discovered that this methodology took a long time. The 4242 matrix generated by the 

MATLAB program "corrplot" for identifying correlations was not easily interpretable. Analysis of variance (ANOVA) is 

another way for executing Stage 1 analysis, whereby p-values are utilized to choose the most fundamental measurements. 

In [6], Lee and Park dispersed data based on a p-value. As the dataset was not generally distributed, the ANOVA technique 

was not used in this study. Following the steps by Mishra, Jothi, Urolagin, and Irani [7], it is possible to implement Stage 1 

analysis. Finding the most crucial metrics required the writers to eliminate them one by one, which was a time-consuming 

process. These issues prevented us from considering  

Stage 1 is an acceptable analytical technique. Stage 2 consisted of identifying a new set of metrics that were important 

(ML algorithms). One SVM classifier was made using the default hyperparameter values, whereas the other was made 

with improved hyperparameters. The identified essential measures detected with both the SVM classifiers [8] are 

illustrated in Table 1. Both classifiers generated similar measurements in relation to their significance. However, there was 

a lot of concordance between the expert measures and the measurements found by the ML method SVM. As a result, SVM 

classifications were employed to classify the data into either non-faulty or faulty categories. After that, we compared the 

linear coefficients that went along with our measurements (the predictors). These are the 18 most important indicators that 

we have compiled. SVM's discovery of additional measures matches the manufacturer-supplied list of 18 measurements. 

Discussions with subject-matter specialists indicated that whenever an issue arises, service personnel may examine Table 

1's measures for signs of malfunction. 

 

Table 1. Essential measurements identified with the SVM aid in Domain 1 

Measurements Description 

MECHM3 Lower bearing diameter (cover side) 

HUSMATNINGM3 Housing measurement total height 

LOCKSHIMSM9 The used shim measurement value 

SEKVENS_HISTORIK History 

ADJ3 Adjustment value 

CARTRIDGESHIMSM5 Actual shim pinion 

PINJONGSHIMSM5 Actual shim measurements value 

PINJONGMATNINGM2 Bearing diameter pinion (gear) 

MECHM4 Upper bearing diameter (house side) 

ADJ2 Adjustment value 

LOCKSHIMSM8 Cover shims for leveling the crown wheel shafts within the assembly 

MECHM5 Measurements of integrated roundness and centricity on gear sets 

HUSMATNINGM5 Bearing seats diameter 

HUSSHIMSM4 Calculated house shims 

CARTRIDGESHIMSM4 Gear (pinions) shim calculated 

PINJONGMATNINGM2 Bearing diameter gears (pinion) 

PINJONGKASTM2 Measurements of integrated roundness and companion flanges  

HUSSHIMSM6 The variation between used shims and calculated shims  
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Fig 6 displays the results of classifying the dataset of the tests based on the application of classifiers with default set of 

hyperparameters and the optimized set of hyperparameters [9]. These metrics demonstrate the classifiers' usefulness. Each 

classifier received a perfect score on measures of accuracy, specificity, and sensitivity; none of the samples were wrongly 

labeled as defective or normal. To test for improved efficiency, one reason to develop a hyperparameter-optimized model 

[10] exists. 

 

 
Fig 6. Non-faulty and faulty classifications based on test dataset of SVM in Domain 1 

 

 
Fig 7. Correlations between the shim dimensions defining measurements in Domain 2 

 

It is also shown that Stage 1 analysis is unfit for use in Domain 1. The complexity of performing Stage 1 grows 

exponentially as the number of measurements rises. Because of the length and complexity of the implementation process, 

this domain is better suited for Stage 2.  

In Domain 2, the studies were carried out in two Stages: Stage 1 and Stage 2. The shim size was correlated with the 

'Gear (Pinion) heights,' 'PTU housing measurements,' and 'Manual adjustments' variables. Correlation coefficients were 
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determined for these data in respect to the shim dimensions in the first Stage, and the findings are indicated in Fig 7. Fig 7 

illustrates that 'PTU housing measurements' correlates most strongly with the 'shim dimension,' which is consistent with 

the consensus of experts. In Stage 2, the LR, RFR, and SVR ML algorithms, with both their basic hyperparameters and 

their adjusted hyperparameters, detected the relative significance (such as linear measurement coefficients concerned with 

shim dimensions) (Fig 8). These ML techniques made use of regression models to forecast the shim size. 

 
Fig 8. The coefficient of linear regression linked with shim dimensions defining a measurement in Domain 2 

 

 
Fig 9. The correlation of the codes within the station in Domain 3 

 

In Fig 8, the negative values show a change in measurement in a positive locus compared to shim dimensions that will 

transform in a negative locus. If the shim size is incorrect, it is likely that the 'PTU housing measurements' is also 

identified as inaccurate, as illustrated in Fig 8. A technician can verify whether or not this measurement has to be tweaked. 

With the exception of the default hyper-parameters RFR model, each of the other models yielded the same outcome. The 

'gear (pinion) height' hyperparameter carries the most weight in the basic RFR model when it comes to shim size. This 

finding, however, contradicts the predictions of the other theories. Although the hyperparameter-based LR and SVR had 

better accuracy (Fig 11), we prioritized the 'PTU housing measurements. In addition, while comparing the default 
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hyperparameter model with the optimized hyperparameter model, it was found that the optimized model had a lower 

general relative predictor value. In comparison to the standardized hyper-parameter framework, an optimized hyper-

parameter framework minimizes the effects of predictors on shim dimensions.  

Nonetheless, even though both the first and the second stage studies were employed in this domain. Stage 1 was more 

user-friendly. Regression models with hyperparameter adjustment were created in the second Stage. As an added 

complication, Stage 2 analysis implementation requires familiarity with ML. When a problem's solution can be found 

using more conventional methods of mathematics or statistics, there's no use in using ML to get there. Thus, Stage 1 

analysis is the best choice for this domain. For the 'PTU housing measurement' in Domain 3 we computed the correlation 

(Stage 1) between different codes of the station and compiled the results in Fig 9 below (i.e. issues where the coefficient of 

correlation is more than 0.8). Fig 9 does not include the codes for the other stations since their correlation coefficients were 

too low to be meaningful. 

In Fig 9, the graph “88” shows a coefficient of correlation of the codes “88” with the different stations. Fig 10 displays 

the outcomes of association rule mining conducted in Stage 2 analysis utilizing the Weka platform. The confidence in each 

rule is more than 90%. The first row, for instance, may be interpreted as follows: if Station 114 is fault-free, then there is a 

one-hundred-percent probability that Station 140 will also be fault-free. If the lift is bigger than 1, the rule heads and rule 

body appear together often compared to how they would be predicted. Rule bodies and rule head may be considered 

separate if the certainty value is 1. Rule improvement is indicated by a conviction value greater than 1. More often than 

not, the rule heads and rule body will occur simultaneously if the leverage value is large. According to Fig 10, these 

metrics all point to the rules being dependable. 

 

 
Fig 10. Rule extracted from the codes at the station in Domain 3 

 

Stage 2's highly correlated stations, however, don't match up with Stage 1's findings. Stage 2 is more precise, according 

to manual checks of the stations. The absence of a defect was disregarded in favor of counting those that did occur in the 

statistical analysis. ML took into account both fault and non-fault station connections. Thus, Stage 2 analysis is optimal for 

this field. 

Stage 1 in Domain 4 makes use of particular statistical methods chosen after an evaluation of fifty publications 

published in 2019 and 2020 that have through a rigorous peer review process. We looked at using spatial statistics, for 

instance, but that methodology is best suited for use in the extraction of features and no predicting. The Cox proportional 

hazard modeling was also used to forecast when an event will occur, but it was unable to account for the shim dimension. 

AFT (accelerated failure time) was also taken into account. Nonetheless, the same procedure as the Cox exponential 

hazards regression is used in this model. Although logistic extrapolation is a classifier and not a regression tool, it was 

examined in just one research. Consequently, we were unable to identify any alternative statistical methods suitable for use 

in Domain 4. As a result, Domain 4 did not participate in Stage 1. 

Stage 2 results showed that the shim dimension could be predicted with near-perfect precision by both the LR or SVR 

(standard and modified hyperparameter) methods. As contrasted to LR and SVR, RFR's (both default and customized 
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hyperparameter) projected value was found to be only slightly off from the actual value. One of the RFR simulations had 

all of its hyperparameters tuned, however that model also had the largest variance. Using the testing dataset and the 

improved hyperparameter RFR method, a parity graph for the shim-dimension predictions is a deviation from the true 

numbers was no more than 10%. 

 

 
Fig 11. Error rate based on regression frameworks on the dataset in Domain 4 

 

 
Fig 12. Projected co-efficient of the model of linear regression in Domain 4 

 

Regression results such as R2, MAE, RMSE, and MSE are shown in Fig 11. (optimized and default hyperparameter). 

The optimized frameworks had somewhat better values for R2, RMSE, MAE, and MSE than the default hyperparameter 

simulations. Nevertheless, the RFR model showed little improvement after hyperparameter optimization. As can be seen in 

Fig 11, the measured data points are quite close to the model's predicted values, and a reduced RMSE value implies a 

better match. Instead, the models show a high degree of accuracy in predicting the shim size (R2 values of 1 or close to 1) 

The models also have very small MAE and MSE values, which indicates that they make accurate predictions. 

Nevertheless, since technicians labelled the dataset used for comparison, there is a chance that some of the labels are 

inaccurate. Thus, the model might have certain flaws. The calculated coefficients for the linear regression modeling are 

shown in Fig 12 for the variables "Gear (Pinion) height," "PTU housing measurement," and "Manual adjustment." Values 

of the predictor' coefficients, denoted by the word "Estimate," reveal their relevance in the framework. Of the three, "PTU 

0 0.2 0.4 0.6 0.8 1 1.2

RMSE

R2

MAE

MSE

LR

Default hyper-parameter-SVR

Optimized hyper-parameter-SVR

Default hyper-parameter-RFR

Optimized hyper-parameter-RFR

-1.5E+08

-1E+08

-50000000

0

50000000

100000000

150000000

200000000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

p-value

tStat

SE

Estimate



 

ISSN: 2959-832X                  Journal of Computational Intelligence in Materials Science 2(2024) 

140 

 

housing measurement" is the furthermost significant. The SE measures how well the model can estimate coefficient values, 

and it is denoted by the standard deviation of the estimate, or "SE." Lower SE values represent more accurate estimates. 

Fig 12 shows that the model provided a reasonable approximation of the true values of the coefficients due to the tiny SE. 

'tStat' evaluates the accuracy of estimate values to decide if a null hypothesis must be rejected or accepted. When the 

term "null hypothesis" is used, it means that no correlation exists between the two variables. When using a regression 

model, a higher tStat value indicates a more reliable estimate. Because tStat is high, we may conclude that the null 

hypothesis is false. P-values in linear regression evaluation indicate whether or not the hypothesis should be ignored. If the 

p-value is small, we can rule out the null hypothesis in this investigation. The input and the result also have a high degree 

of association. Fig 12 shows that there is a perfect correlation between all of the predictors and the outcome, since all of 

the p-values are 0. Since Stage 1 was not feasible, Stage 2 is the preferable methodology for that particular Domain 4. 

 

 
Fig 13. Modeling the 'PTU housing measurements' error distribution 

 

Duplicate PTU units in Domain 5 were identified by looking in the "Serial number" column, and if one already existed, 

a new one was made in case of a problem. The broken item was fixed and returned with the same "serial number." Station 

fault codes 90 and 110 were analyzed in Stage 1 of the project. It was discovered that 3,930 products from stations 90 and 

110 were defective. Just 360 identically broken pieces were fixed out of a total of 3,930. Experts say that faulty PTUs 

might be given new "Serial numbers" or scrapped entirely. Although it is not fundamental to employ ML to determine 

copied cases within a particular set of integers, Stage 2 was not implemented here. The following scenarios call for the use 

of ML: Complexity, memory requirements, and the need for flexibility are all indicators of an unhumanly difficult 

endeavor. So, the Stage 1 strategy is the most appropriate for use in Domain 5. 

In Domain 6, the first stage was put into action to determine the error rate distribution. There is a Gaussian association 

between defects and measurements with one exception: "housing measurements from loading residential home," which has 

a huge bar at the 59%. We take it as given that the equivalence of the data to 59 was not the result of a coding error. These 

numbers have been verified as accurate after extensive examination. In Fig 13, we can see how the 'PTU housing 

measurement' error is distributed. The error rate is rather high with this value (103.58). On the other side, the rate of errors 

drops as it falls below 103.68. Due to the identical issues discussed in Domain 5, Stage 2 was never implemented; as a 

result, Stage 1 is the optimal strategy for this particular domain. 

 

V. CONCLUSION 

This research gives a comparison assessment of the appropriateness of different analytical methodologies in the preceding 

six domains, and adds to our understanding of an assembly line in a manufacturing organization. When a problem is 

detected in a PTU, the suggested methodologies enable assembly line personnel to just verify the critical measures 

highlighted by ML (Domain 1) rather than all 42 measurements. A technician may also verify whether the 'PTU housing 

measurements' fits the shim measurements (Domain 2). The manufacturing firm may learn more about the patterns and 

root causes of failures by examining the connections between station codes in Domain 3. To aid technicians in making the 

best shim selection in the event of a mismatch, a cloud-based solution is available for predicting the shim dimensions 

(Domain 4). Technicians might strive to slow the pace at which defective units are produced by keeping an eye on Domain 

5. It has been determined via consultation with manufacturing firm specialists that the 'PTU housing measurements' error 

distribution (Domain 6) is exponential. While a normal distribution was expected, this investigation discovered a Gaussian 

one; this disparity will be explored in future studies. 
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