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Abstract – The combination of quantum computing (QC) with artificial intelligence (AI) has the potential to significantly 

transform several industries and enhance quality of life. AI applications, such as autonomous vehicles and image 

recognition, significantly depend on supervised learning, which is a type of machine learning. Researchers are now 

examining the intersection of AI and multi-agent planning systems (MAPS) using quantum algorithms and game theory. 

Quantum machine learning and optimization techniques use the advantages of QC to accelerate training and optimization 

processes, drawing inspiration from quantum physics. With machine learning methods, it is now becoming commonplace 

in materials research to make predictions about the characteristics of inorganic solid-state materials. However, a significant 

issue lies in the limited availability of datasets. This article explores the structure and characteristics of the High Throughput 

Experimental Materials (HTEM) Database, which contains a vast amount of experimental data on inorganic materials 

obtained using high-throughput technologies. The HTEM Database provides a significant resource by offering 

comprehensive EDIM built using high-throughput exploration methodologies. The database offers a multitude of search 

and visualization functionalities and may be accessible using a web-based interface. Regular updates are performed on the 

HTEM DB to integrate new data and mitigate processing issues. 

 

Keywords – Artificial Intelligence, Machine Learning, Quantum Materials, Quantum Computing, High Throughput 

Experimental Materials. 
 

I. INTRODUCTION 

Renowned quantum computer (QC) scientists, such as Lov Grover and Peter Shor, have brought up the subject of the 

distinctive characteristics that quantum computers offer in contrast to regular classical computers. Shor's approach provides 

a substantial increase in computational speed for the process of factorizing large numbers. This functionality has the potential 

to significantly impair the efficiency of the commonly used Rivest-Shamir-Adleman (RSA) public key encryption method 

[1], which is often utilized on the Internet. Chung, Yu, and Wong [2] displayed the capacity of a quantum database to provide 

a 100% improvement in search query performance. Bauer et al. [3] confirmed Feynman's initial conjecture on quantum 

simulation, thereby establishing a path towards the effective simulation of materials at the quantum scale.  

Data is stored by quantum computer (QC) by using “qubits” or “quantum bits”. These qubits may be imagined of as a 

pair of quantum states (QS) associated with “artificial atoms” generated by quantum mechanics. This issue of MRS Bulletin 

discusses several techniques for producing these artificial atoms. The systems in issue include a range that extends from 

atomic ions to complex structures like Josephson junctions and quantum dots, which consist of billions of atoms. Under 

certain situations, these devices demonstrate behavior that is similar to atomic systems. The quantum mechanical description 

of these entities comprises their internal states, where the information of an N-qubit structure is stored in the N-body 

probability amplitude. Usually, the qubit is formed by selecting two QS from the several artificial atoms’ states, resulting in 

a quantum system with just two levels. More precisely, a stores data in the quantum-mechanical extents of the fundamental 

states of each of the N-body, two-level systems. These are a pair of intricate numerals. The memory of a QC is composed of 

N qubits, which may be precisely manipulated to experience certain physical interactions. 

To process this information, qubits must interact with one other through a certain arrangement of classical control 

indication, such as electromagnetic fields. These signals link the qubits and perform quantum logic performance. This 
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quantum algorithm (QA) facilitates the advancement of all quantum data. The primary factor behind the remarkable potential 

of quantum computing, especially in specific tasks, is in the control of interactions among N qubits, resulting in the 

proliferation of 2N complex coefficients. However, the data kept in these qubits is crucial. The complex properties that 

characterize a qubit may be violated in two main ways. Initially, multiple qubits are obtained by extracting the lowest energy 

state and a higher energy level from a physical system. The deterioration of the qubit's state and the loss of quantum 

information happen as a result of the energy relaxation process towards the lowest energy state, which defines the duration 

of radiation for the system. Dephasing is a mechanism that may cause the loss of quantum data. The interaction between a 

qubit and its surrounding environment offers summation relaxation pathways that affect both the duration and phase of the 

qubit's state.  

When the qubit socializes with other unconsidered two-level systems, such as residual environmental degrees of freedom, 

it will cause a seemingly random change in the qubit's phase, even if the amplitudes remain unchanged. It is essential to 

minimize the interactions between the qubit and its physical surroundings in quantum technologies. Over the last 15 years, 

the discipline of quantum computing has evolved from a niche and esoteric physics` branch to a challenging and rigorous 

frontier of emerging technology, engineering, and materials science [4]. While there are yet no QCs that are deemed “useful” 

and capable of scaling, there has been steady advancement in the creation of many potential candidate designs. The creation 

of a quantum computer has many hurdles that are closely related to topics that are particularly suitable for the area of 

materials science. 

This article aims to justify the design and use of the High Throughput Experimental Materials (HTEM) Database. The 

fusion of artificial intelligence (AI) with quantum computing has the capacity to transform several industries and augment 

our standard of living. Machine learning methods, namely supervised learning, are crucial in many AI applications, such as 

image recognition and autonomous vehicles. The rapid expansion of data and ongoing progress in computer capabilities 

have significantly increased the potential of machine learning and artificial intelligence to transform several industries and 

improve our overall well-being. The rest of the article is organized as follows: The second section presents an overview of 

AI for quantum computing. In this section, we review AI and ML, different applications of quantum computing in AI, 

quantum ML algorithms, and quantum-inspired optimization algorithms. The third section focuses on related works on 

quantum computing. The fourth section focusses on making forecasts from known materials in experimental databases based 

on the application of machine learning. The fifth section reflects on the results and discussion of database infrastructure and 

content, and database explorations and application. Lastly, the sixth section presents a summary of the results.  

 

II. OVERVIEW OF AI FOR QUANTUM COMPUTING  

Overview of AI and ML  

Supervised learning in machine learning refers to the process of instructing an algorithm by presenting it with a collection 

of labeled instances. This allows the program to forecast results for novel, unmarked data. The agent acquires knowledge 

via a process of experimentation, where it is rewarded for making favorable choices and penalized for making unfavorable 

ones [5]. Machine learning is essential in several AI applications, including image recognition and autonomous cars. With 

the exponential growth of data and the continuous advancement of computer power, the capacity of machine learning and 

artificial intelligence to revolutionize several sectors and enhance our quality of life grows more substantial. 

 

Applications of Quantum Computing in AI   

Quantum algorithms for learning  

The intersection of quantum processing with AI has proved to be significant in the field of machine learning. Multiple 

scholarly articles, such as [6] and [7] are dedicated to the quantum extension of computational learning theory. Their 

objective is to discover QAs that surpass the efficiency of current classical methods in learning particular classical gadgets, 

like Boolean functions. This study is intricately connected to quantum intricacy theory. 

 

Quantum algorithms for decision problems  

Decision difficulties may often be expressed using decision trees (DT). Childs and Farhi [8] demonstrated that QAs using 

Hamiltonian evolution may solve choice issues depicted by a certain class of DT much quicker than conventional random 

walks, with an exponential speedup. However, this does not indicate any superiority of quantum computing over 

conventional computation for this specific category of issues, since they may also be efficiently addressed by alternative 

conventional techniques. 

 

Quantum search  

A significant portion of the first AI research focused on the exploration of search methodologies. This phenomenon may be 

attributed to two factors. Firstly, several artificial intelligence (AI) challenges can be simplified to a search process, such as 

data retrieval, planning, theorem proving, and scheduling. Secondly, computers possess the ability to do these tasks at a 

much higher speed compared to people. The Grover algorithm [9] demonstrates that quantum computers have the capability 

to outperform traditional computers in terms of speed. It is commonly anticipated that quantum computing would be 

extensively used in the field of artificial intelligence to effectively address a range of search-related issues. Quantum 

searching is anticipated to be among the first quantum computing approaches that would significantly impact AI. Moret‐
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Bonillo [10] provided a comprehensive analysis of the use of quantum search algorithms in the field of artificial intelligence. 

However, to this day, a decade later, there have been only a limited number of successful implementations of quantum 

searching in the field of artificial intelligence. 

 

Quantum game theory  

Game theory aims to mathematically represent a scenario in which individuals engage in interactions. The individuals 

participating in the game are referred to as players, their potential actions are known as moves, and a set of instructions that 

dictates the specific move to be executed in every given game scenario is termed a strategy. A strategy is a comprehensive 

plan of action that encompasses all potential possibilities within the established rules of the game. A pure strategy is a 

consistent choice of a certain move in a game, but a mixed strategy involves using a randomizing mechanism to pick among 

alternative moves. The utility of a game result to a player refers to a quantitative assessment of how desirable that outcome 

is for the player. A payout matrix assigns quantitative values to the players' utility for each possible result of the game. The 

participants are expected to optimize their utility within the prescribed rules of the game. Games characterized by players' 

options being immediately revealed are referred to as games of perfect data. These are the primary ones that are of relevance 

to us in this context.  

A dominating approach is a strategy that consistently outperforms any other plan regardless of the actions taken by the 

opponent player(s). The Nash equilibrium (NE) has the utmost significance among the potential equilibria in game theory. 

It refers to a situation where no actor can increase their payout by unilaterally changing their strategy, because to the mix of 

methods being used. A Pareto optimum outcome is a situation in which no actor may increase their utility without causing a 

decrease in another person`s utility. Strategy A is considered evolutionarily stable versus strategy B if, for any adequately 

small and positive epsilon (ǫ), A outperforms B while playing against the mixed approach (1 − ǫ)A+ ǫB. An evolutionarily 

stable strategy (ESS) is a strategy that remains stable and resistant to evolution when compared to all other strategies. The 

collection of all strategies that constitute Evolutionarily Stable Strategies (ESS) is a subtype of the NE of the game. A two-

player zero-sum game is characterized by the participants having completely opposing interests. In other words, the total of 

the rewards for any outcome in the game is equal to zero. A saddle point in a game refers to an entry in the action matrix 

where the row player's payment is the lowest among all the entries in its row, and the column player's action is the highest 

among all the entries in its column. 

The use of game theory in artificial intelligence is becoming prevalent, particularly in the context AI and  multi-agent 

systems(MAS). In recent times, there have been proposals for quantum elongations of game theory in a series of works. For 

instance, Vijayakrishnan and Balakrishnan [11] established the concept of quantization in nonzero sum games involving two 

players, while Martínez-Martínez [12] offered quantum games involving more than two players. Duong et al. [13] posited 

that quantum game theory provides novel methodologies for addressing some challenges in artificial intelligence (AI). 

Additional possible applications of quantum processing in AI include (a) Representing knowledge via quantum juxtaposition 

and accelerating knowledge thinking through quantum parallelism. (b) Employing distributed quantum computing and 

quantum communication in MAS, specifically utilizing entanglement for cooperation. 

 

Quantum Machine Learning Algorithms  

The integration of QC with ML, forming a burgeoning field of research is referred to as Quantum machine learning (QML). 

It utilizes the benefits of quantum computing, such as parallel processing and quantum entanglement, to expedite the training 

and inference procedures of ML algorithms. The intricacy of ML tasks. Utilizing linear algebra for QML: The quantum logic 

operation, or qubits, applies a multiplication of the appropriate state vector by 2n*2n matrices. The pivotal method for 

transitioning from classical computing to quantum computing is the HHL (Harrow, Hassidim, and Lloyd) algorithm.  

 

Quantum Boltzmann machine 

Quantum Boltzmann machines are a specific kind of quantum neural network used to learn a collection of Hamiltonian 

parameters (wj) that may mimic an input state (ρtrain) by using a predetermined set of Hamiltonian terms (Hj). The quantum 

relative entropy (S) is used to quantify the accuracy of the approximation. It serves as an upper limit for the difference 

between the two states. Experimental methods may be used to determine the gradient of the relative entropy, and the 

Hamiltonian parameters are updated via gradient descent. Stoquastic Hamiltonians, characterized by real and non-positive 

off-diagonal matrix elements, are very compatible with this approach. However, there is yet no efficient classical counterpart 

for non-stoquastic Hamiltonians. 

 

Quantum-Inspired Optimization Algorithms  

To address optimization issues, classical algorithms known as quantum-inspired optimization algorithms use some of the 

ideas from quantum physics. These algorithms surpass conventional optimization strategies by effectively exploring search 

areas via the use of entanglement, disruption, and superposition ideas. Here are many optimization strategies that are 

influenced by principles from quantum mechanics: Quantum annealing is an optimization strategy that aims to identify the 

lowest energy state of a system by using quantum tunneling, which allows particles to pass through barriers they lack 

sufficient energy to overcome. Although often used for D-Wave quantum computers, this methodology may also be 

implemented on classical computers using traditional simulation approaches. Conventional optimization techniques, such as 
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Quantum-inspired Simulated Annealing, use thermal fluctuations to uncover the optimal solution. Quantum-inspired 

simulated annealing algorithms use principles of quantum mechanics to enhance the efficiency of search space exploration 

and discover solutions that are close to optimum. 

Quantum-inspired optimization algorithms have shown superior efficiency compared to traditional optimization 

algorithms in handling some issues, especially those pertaining to optimization in complex systems. Nevertheless, it remains 

uncertain if they can surpass quantum algorithms in performance when executed on a quantum computer. Meanwhile, these 

algorithms and the knowledge gained from their development might contribute to the improvement of design suggestions 

for quantum hardware. 

 

III. RELATED WORKS  

In order to inspire the development of a data mechanism that gathers and enhances an experimental data stream for later 

utilization by sophisticated systems, Draxl and Scheffler [14] initially examine the requirements of data and experimental 

researchers (ER) in relation to their usual workflows, as illustrated in the materials science domain example depicted in            

Fig 1. This study delineates the shared and distinct data infrastructure needs of high-throughput experimental (HTE) data 

and materials researchers. The research community for HTE materials begins a study by developing a hypothesis, which is 

subsequently tested through experiments. The data undergo processing and analysis, and the findings are communicated via 

a peer-reviewed paper that examines the connections between structure, material production, composition, processing, 

performance, and characteristics. The materials-data researchers start their investigation by finding a collection of pertinent 

data. The dataset is then gathered and organized in order to facilitate filtering and analysis for the purpose of identifying 

relationships among the data, which ultimately provide the stated findings.  

 

 
Fig 1. Requirements for managing data in the field of experimental materials research 
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Fig 2. Methodologies and processes for conducting extensive materials research for experimentation and data analysis 

According to Barseghian et al. [15], both the experimental and data processes have distinct necessities, but they may be 

combined into a unified workflow by categorizing the data demands as output, input, usability, or infrastructure, as seen in 

Fig 1. The experimental workflow necessitates the use of instruments for the acquisition, organization, and retention of 

recently created data, whereas the data workflow necessitates convenient retrieval of the stored data. In addition, the ER 

need tools for the analysis and extraction of insights from the information, while the information researchers want extensive, 

varied, and high-caliber datasets. Nevertheless, both experimental and data processes need access to a repository for new 

data and previously acquired data, resulting in a significant convergence in their outputs and inputs. The need for these 

overlapping needs led to the development of the RDI, which gathers, analyzes, and archives experimental metadata and data. 

Additionally, the HTEM-DB serves as a repository for experimental data and as a resource for data-driven investigations. 

Fig 2 illustrates the integrated data and experimental process that is widely used by researchers in the field of components 

discovery at NREL. NREL has a significant amount of high-throughput experimentation (HTE) facilities and experience in 

thin-film components research (Fig 2 A–2E). Bhati, Nazeeruddin, and Maréchal [16] focus on the deposition and analysis 

of thin films. The films are typically deposited on square substrates measuring 50 × 50-mm (2 × 2”) and are characterized 

using a 4 × 11 sample mapping grid. These substrates and mapping grids are often used in various combinatorial spatially 

resolved characterization devices and thin-film deposition chambers at NREL. This experimental procedure at NREL has 

been compared to and evaluated against the methodologies used by other facilities. Other publications highlight the various 

types of chemical compositions (such as oxides, nitrides, chalcogenides, Li-containing materials, intermetallics) and 

characteristics (such as optoelectronic, electronic, piezoelectric, photoelectrochemical, thermochemical) to which these high-

throughput experimentation (HTE) methods have been utilized. 

The data (green) and experimental (red) research procedures include distinct infrastructure and usability prerequisites on 

the right side, while sharing common data intake and outflow requirements on the left side. The research procedures at NREL 

are integrated into a unified RDI and HTEM-DB. This allows for the use of current experimental data to generate novel 

insights in materials science using machine learning. The process commences with (A) formulating the experiment design, 

followed by the production (B) of material samples. These samples are then (C) subjected to treatment, (D) measured, and 

finally (E) stored in archives. The estimated data are gathered for the purpose of evaluation and are then published in a 

publication, where they provide information for future research. In order to collect metadata (green), measure data (purple), 

automate file management (red), and provide access (blue), data tools were developed at each step. 

In [17], the sample libraries (SLs) mentioned in HTEM DB were prepared using PVD synthesis techniques, namely 

pulsed laser deposition (PLD) and co-sputtering, which were conducted in vacuum chambers. Both of these physical vapor 

deposition (PVD) procedures involve the conversion of solid substance precursors, often ceramic or metallic disks known 

as 'targets', into a plasma phase by the application of external energy stimuli. Sputtering utilizes electrified radio frequency 

power, while pulsed laser energy is used in pulsed laser deposition (PLD). The vapor that is produced subsequently 

condenses onto a smooth reinforcement, often circle or square plates made of silicon or glass, which are commonly known 

as 'substrates'. A thin film layer is created on the substrate's surfaces because of this condensation process. By targeting the 

substrate, combinatorial sputtering techniques allow purposeful shape differentiation of coatings, and maintain high 

throughput. Considering the pulsed laser deposition (PLD), the anticipated results are accomplished by proper 

synchronization of switches and rotational substrates. The aspect of sputtering is widely employed as an approach, which 

facilitates smooth transformation of newly established materials for the lab to large-scale production.  

Research by Kuri et al. [18] reviewed sample libraries (SLs) in the HTEM database based on the application of various 

approaches such as X-ray diffraction, electrical diffraction, X-ray fluorescence, and optical sensing. The approaches of X-

Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) utilize x-rays to evaluate the crystalline nature, and thickness of thin 

film materials. Understanding these materials is fundamental to identify defects in the materials’ micro-structure at the 

interfaces and in an atomize samples. To effectively evaluate the resistance of leaves within a specific sample, a 4-point 

electric probe is employed to accurately quantify the output of energy. Similarly, optical spectroscopy utilizes light with the 

visible, infrared, and ultraviolet spectra to effectively quantify the transmittance and reflectance of materials. This is obtained 

by evaluating both electrical and optical data to compute the required figures. Using XRF, the samples’ thickness can then 

be determined. The optoelectrical characteristics, as assessed in this context, play a crucial role in identifying the most 

suitable material for a certain application.  

Within the chosen substance structure, characterized by its specific chemical composition, the word "high-throughput" 

(HT) in the HTEM DB name signifies the increased rate of testing, as mentioned by Williams et al. [19]. The use of a slope 

enables the concurrent amalgamation of a vast quantity of chemicals, so achieving this objective. The shape of the material 

is often determined by the statistical probability of possessing the required attributes, together with prior experimental 

investigations and theoretical calculations. Choosing this option often leads to a decrease in throughput. To ascertain the 

essential features, we examine the precise technical prerequisites of the financial organizations that are backing the project. 

The HTEM DB contains instances of Co-based oxide material structures, such as Co-Ni-O, Co-Zn-Ni-O, Co-Zn-O, and Co-

O, which have been identified by first-principles calculations. Research has been conducted on the potential use of these 

substances as transparent p-type emitters in the electrical interface activities of solar cells. The HTEM DB is a compilation 

of information from many sponsored research initiatives on specific structures systems, rather than an attempt to 

comprehensively include all potential merging of tables of elements. It is important to mention that HT studies expedite the 
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investigation of certain factors that can be easily tested using HT methods, like substrate temperature or chemical 

composition. Adjusting additional processing settings often results in further enhancement of the qualities of the materials.  

According to Zakutayev et al. [20], using the previously described Zn-Ni-Co-O databank as an instance, the 

comprehensive analysis of structures reveals that the maximum specific conductance of 70 S/cm is seen in compositions that 

are rich in Ni and Co. Nevertheless, by refining the thin film accumulation technique and using post-accumulation annealing, 

it is possible to enhance the conductivity to 170 S/cm36. This demonstrates that the purpose of HTEM is to explore broad 

correlations and patterns throughout the data in order to pinpoint the most promising locations for processing parameters 

and chemical compositions in order to optimize them further.  

This work introduces and describes the HTEM Database, which comprises substantial exploratory information for 

inanimate materials developed utilizing HT exploratory procedures. The database holds the promise of future research and 

development efforts. 

 

IV. MAKING PREDICTIONS FROM KNOWN MATERIALS IN EXPERIMENTAL DATABASES USING ML  

Machine learning (ML) is a sector within computer science that focuses on the development of algorithms capable of creating 

models based on existing data, identifying patterns and relationships within this data, and making predictions about 

information that is not yet accessible. The forecasts are based on data mining, which is the practice of uncovering sequences 

in large information via data techniques. ML techniques have lately achieved success in automating processes, interpreting 

natural language, and analyzing visual data. These successes have been possible due to the availability of extensive datasets 

that facilitate data-driven modeling.  

These achievements also generated debates over the possibilities of 'Artificial Intelligence' in the field of research and 

'The Fourth Paradigm' of information-driven scientific exploration. Applying AI to information-driven substances discovery 

is crucial in the field of materials research, since novel materials often serve as the foundation for significant advancements 

in contemporary technology. Advanced energy technologies have been facilitated by the utilization of gallium nitride in 

light-discharging rectifying valve, enabling enough solid-state lighting. Lithium-ion batteries' usage of intercalation 

materials has enabled the creation of electric vehicles. Furthermore, without the use of silicon material, contemporary 

computers would not have been possible to exist.  

 
Fig 3. Relation between the variety and amount of materials data in present databases 

 

Machine learning techniques have recently been used in computational materials science to forecast the structure, 

stability, and characteristics of inanimate solid state substances. These discoveries were made possible by advancements in 

feigning techniques at various length scales. The generated simulated substances information are maintained in continuously 

expanding publicly-accessible conceptional property databanks. Unlike calculations, the process of discovering materials 

   

 

 

 

 

 

 

 

 

 

 

 

 

Atom Works 

MP, Aflow 

OQMD, MatDB 

Landolt-

Bornstein 

ASM Int. 

Acer/NIST 

ICDD 

ICSD 

Journal 

articles 

Data Diversity 

D
at

e 
S

iz
e 

106 

100 

103 

 



 

ISSN: 2959-832X                  Journal of Computational Intelligence in Materials Science 2(2024) 

113 

 

experimentally via ML is constrained by the scarcity of extensive and varied datasets (see Fig 3). The Inorganic Crystal 

Structure Database (ICSD), a vast collection of experimental data, consists of hundreds of thousands of entries. However, it 

lacks diversity since it only provides information on the structure and composition of the materials. The Landolt–Börnstein 

dataset [21] and the AtomWorks dataset [22] consist of hundreds to thousands of entries for various attributes. However, 

these datasets are not sufficiently big to train contemporary machine learning methods. Moreover, none of these databases 

provide synthesis data like pressure or temperature, which is essential for fabricating materials with desired characteristics. 

In Fig 3, the combinatorial databanks, shown by red circles, are extensive and varied. Exploratory databanks, on the 

other hand, have restrictions in terms of their size and diversity, which restricts the applicability of machine learning 

techniques. ML in investigational materials research has mostly concentrated on implementing established methods that are 

appropriate for relatively small but intricate datasets. These datasets often consist of x-ray diffraction patterns, microscope 

pictures, or materials microstructure. A possible machine learning approach to generate extensive and varied materials 

datasets is using natural language processing techniques on research papers found in scientific publications.  

Nevertheless, a significant proportion of journal articles in the field of experimental materials science is confined to the 

findings that writers subjectively deem as the most captivating, resulting in a substantial volume of unpublished 'dark 

information. In addition, the published papers often exhibit a bias towards favorable study findings, since the scientific 

community discourages the publishing of unsuccessful trials. The selective omission of unfavorable findings is a challenge 

for machine learning, since several algorithms need the inclusion of both positive and negative outcomes to facilitate 

effective training. In conclusion, a relatively tiny percentage of these journal article articles are connected to the related 

publishing of information, even while funding agencies and scientific journals are pushing for more public availability of 

research data. 

In this article, we outline our advancements in developing the HTEM Database, which may be accessed in [23]. The 

HTEM DB is the first publicly accessible extensive compilation of investigational information for inanimate structures 

produced by HTE thin film methods. The HTEM DB currently comprises of data on the synthesis circumstances, 

optoelectronic property measurements, crystal structure, and chemical content, of the materials.  

 

V. RESULTS AND DISCUSSION 

Database infrastructure and content  

 
Fig 4. Characterization of each input in the library using spatially resolved characterisation techniques 

 

The HTEM DB stores data on inorganic materials that have been produced as thin films, a configuration that is well-

suited for conducting experiments on a large scale. Insulators, metals, and semiconductors make up the thin film SLs in 
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HTEM DB. These samples are generated using PVD procedures. Each sample in the library is characterized using spatially 

figured out characterization methods, as shown in Fig 4. The choice of materials for synthesis is often determined by 

computational predictions, previous experimental research, and particular target applications such as photoelectrochemical 

absorbers, solar cell materials, piezoelectrics, and transparent contacts. Materials with potential that are produced via the 

combination of spatially and synthesis detailed characterization are often refined through the use of conventional 

experimental techniques.  

With the exception of a few intermetallic complexes, the majority of these components are found in compounds that are 

chalcogenide, nitride, or oxide. The Related Works section and specialized review articles give a concise overview of various 

high-throughput experimental approaches, with a specific emphasis on electrical and energy materials. This work does not 

mention other types of materials, like homogeneous catalysts or organic polymers, that may be studied using high-throughput 

experimentation. The reason for excluding them is because they are not presently integrated in the HTEM DB. The HTEM 

DB currently has 141,574 records of thin film inanimate substances as of 2018. The entries are organized into 4,356 sample 

libraries (SLs), which are spread out across about 100 distinct materials systems. Fig 5 provides a visual representation, in 

the form of a bar chart, of the HTEM DB content. It specifically focuses on the 28 most frequently occurring metallic 

components.  

 

 
Fig 5. Identification of metallic components in the HTEM DB based on data from x-ray illumination analyses and 

accumulation precursor data 

 

Most of these metallic structures are found in the form of compounds, with oxides accounting for 45%, chalcogenides 

for 30%, and nitrides for 20%. A small percentage, about 5%, also form inter-metallics. For these items, synthesis conditions 

including temperature (83,600), electrical conductivities (32,912), optical absorption spectra (55,352), composition and 

thickness (72,952), x-ray divergence patterns (100,848) are supplied. Of the sample entries, 80–90% have never been 

published before, and just around 10% have been reported in peer-reviewed writings.  

At present, over half (50-60%) of the properties` measured are accessible to the public, while the other properties are 

owned by privately-funded organizations and continuing or completed public programs that still need data curation. The 

NREL Laboratory Information Management System (LIMS) facilitates substances research and supports the HTEM DB. 

The LIMS is tasked with the automated collection, categorization, and storage of synthesis information and measurement 

information in a data warehouse. The Extract, Transform, and Load (ETL) procedure consolidates specific information into 

a customized relational databank known as the HTEM DB. The HTEM DB may be accessible via a web-based interface 

(WBI) and other visualization and analytical tools using a quality-based application programming interface (API). 

 

 
Fig 6. Application of HTEM DB by NREL 
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Fig 6 illustrates the use of HTEM DB, which is a unique Laboratory Information Management System (LIMS) built by 

NREL. This system has been created via extensive cooperation among computer scientists, materials researchers, 

programmers, and database architects over a significant period of time. Initially, the materials information is systematically 

collected from characterization and synthesis devices and stored in a data warehouse, which serves as a repository for 

metadata files and materials data. Subsequently, the ETL procedure harmonizes characterization and synthesis metadata and 

data, integrating them into the HTEM databank using an object-relational structure. An API is used to provide steady relation 

between client administration, such as the HTEM database, and statistical analysis tools, and online user interfaces.  

The online user interface allows materials scientists worldwide, who lack access to specialized HT experimental 

equipment, to see a limited number of specific databanks at a time, even if they did not produce this information. For instance, 

the API in [24] provides computer experts with the ability to get a greater quantity of material databanks specifically for the 

purposes of ML and data mining. Both forms of access to the extensive and varied items information in HTEM DB have the 

potential to stimulate the ingenuity of researchers in unforeseen ways that are now challenging to predict. Additional 

technical information on the database architecture and the underlying system of managing data may be found in the Methods 

section. 

 

Database Exploration and Application 

Users primarily interact with HTEM DB via its specialized WBI located at htem.nrel.gov. Initially, the databank may be 

queried to get the example libraries of materials that include the desired components. Furthermore, the search results may 

be refined by applying other filters, such as completeness/data quality, synthesis conditions, and additional information. 

Ultimately, the refined search results may be shown and examined in an interactive manner, or saved for more comprehensive 

examination on the researcher's computer. To begin engaging with the HTEM DB, the first step is to do a search for the SLs 

pertaining to the desired substance. Customers could choose elements from the periodic table on the 'Search' page by using 

either the 'all' or 'any' search options. To obtain search results, the 'All' search option necessitates the existence of all 

designated items and maybe extra components. The 'any' search option allows for the retrieval of results as long as at least 

one of the chosen elements is present. Additional sophisticated search logic is organized for implementation in the future.  

On the search page and the following pages, you may find comprehensive information on HTEM DB, including details 

about its purpose, statistics, and the application programming interface (API). Users are advised to constantly check the 

latest information on HTEM DB, as opposed to relying on this document, in order to stay informed about any changes or 

updates. After doing the search, the 'Filter' page displays a list of SLs that satisfy the search parameters. It also provides a 

sidebar for further refinement of the results. The SLs can be viewed in three different ways, each providing an increasing 

amount of information: compact view (including measured properties, data quality, database sample ID, and included 

elements), detailed view (including measurement/ synthesis date, sample number, deposition chamber, and the person 

responsible for generating the sample), and complete view (including synthesis parameters like power/ targets, flows/ gases, 

temperature/ substrate, time, and pressure). The introduction of the five-star data quality scale, with a 3-star rating for 

uncurated data, aimed to empower users to choose their preferred trade-off between data quantity and quality during analysis. 

All descriptors, including this one, may be used to categorize the search results or narrow them down by utilizing the sidebar 

located on the page`s left side. Furthermore, the user has the option to manually choose or deselect the sample library by 

using the checkboxes located on the page`s right side.  

Once the filtering process is finished, users can utilize the 'Share Filter' option to share the search results with other users, 

creating a special web link. Additionally, the characteristics of the chosen SLs can be examined by pressing the 'Visualize' 

button. To prevent lengthy loading times, it is advisable to restrict the number of displayed SLs to fewer than 10-20 due to 

the abundance of data currently accessible. The product view on the 'Visualize' tab of the HTEM DB consists of three 

customizable charts per chosen SL. At the 'Visualize' page, you may specify the point size, y-axis, color scale, and x-axis 

for each of these three sets of plots using the drop-down choices. There are options to display both linear and logarithmic 

graphs. Right now, the scalar adjustable that can be schemed in this way are the sample thickness, chemical identify of each 

essential element, x/y correlates on the SL, and a variety of properties like electrical (standard deviation, conductivity, 

resistivity, sheet resistance, etc.), optical (mean visible transmittance, BG, etc.), and structural (picks` number in XRD 

pattern, etc.).  

There are plans to develop multi-library plots, which will allow for the comparison of numerous sample libraries on a 

single plot, in the future. The Properties' page spectra view is organized similarly to the properties view. It displays plots that 

represent structural information, such as optical properties, and x-ray diffraction patterns, like absorption spectra. These plots 

are available for each of the selected SLs and can be displayed on either a logarithmic or linear scale. At now, the user is 

unable to set the axes of these plots. However, it is intended to include this capability in the future. Users may obtain thorough 

details about the SL from the clarify page by pressing the 'Library Details' button on the 'Properties' or 'Spectra' sections of 

the 'Visualize' page. A page that offers a brief synopsis of the sample library, complete with details, characteristics, and 

spectra, is displayed to users upon selecting the 'Library Summary' button. 

Fig 7 displays an example of the spectra plots and property found in the HTEM DB for a specific sample library of Zn-

Ni-Co-O. Panel (a) represents the thickness (size) and composition (color) of the sample at different positions (x and y) in 

the library. Panel (b) represents the direct bandgap (DBG) (size) and conductivity (color) of the sample at the same positions. 

Panel (c) displays a summary analysis figure that shows the relationship between the logarithm of conductivity and 
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composition. The color scale represents the DBG, while the point size represents the thickness. Panel (d) represents the x-

ray diffraction patterns, whereas panel (e) represents the optical absorption spectra. 

Fig 7 exhibits a segment of the library summary view pertaining to a specific Zn-Ni-Co-O SL. Based on the XRF data 

(see Fig 7a), there is a consistent linear variation in the zinc content throughout the sample library, as shown by the color 

scale. However, the thickness of the samples remains relatively constant across the library, as shown by the point size. The 

conductivity, as shown in Fig 7b, varies across the sample library, as shown by the color scale. However, the DBG stays 

rather consistent, as represented by the point size. By combining these two databanks (see Fig 7c), it is evident that the 

transmission, shown on a logarithmic axis, achieves its highest value of 4 S/cm at a Zn constitution of 33%. This relationship 

holds true independent of the direct band gap (represented by the color scale) and the density (represented by the point size). 

The optical absorption spectra and X-ray diffraction (XRD) patterns may be shown as well (Fig 7d and Fig 7e, respectively). 

This example demonstrates the use of the 'Visualize' tab to investigate and evaluate the information in HTEM DB.  

 

 
Fig 7. An illustration of the property and spectrum plots for a particular Zn-Ni-Co-O sample library that may be found in 

the HTEM DB 

 

Additional categories of spectra and features will be included into the databank in the future. The data analysis 

capabilities of the HTEM DB online interface are restricted to generating basic spectra and property plots for a limited 

number of data collections, as previously mentioned. To conduct a more comprehensive study beyond the capabilities of the 

HTEM DB online interface, users have the option to download the datasets they are interested in [25]. They may then analyze 

these datasets using their preferred software programs such as Python, MatLab, Igor, Mathematica, and R, etc. The task may 

be achieved by using 'Download' buttons got on the spectra and property pages (with future implementation on the filter 

page as well), which save the information in a simple CSV format. To facilitate study of a greater quantity of information, 

it is recommended that users use a comprehensive and accessible API. This API provides data in many widely-used 

materials-specific formats, like Citrine's MIF format and NIST's MDCS format. It is advisable to use API data access instead 

of downloading the data to get the most up-to-date findings. The HTEM DB content is frequently updated to include extra 

data, address data processing errors, and curate data based on its consistency. 

 

VI. CONCLUSIONS 

Quantum computing and quantum algorithms have the capability to greatly accelerate the solution of certain choice problems 

that are represented by decision trees, resulting in exponential speedup. Quantum game theory and quantum communication 

may be used in multi-agent systems and distributed AI to augment cooperation and decision-making. Quantum machine 

learning integrates the advantages of quantum computing, such as simultaneous processing and quantum entanglement, with 

machine learning algorithms to accelerate training and inference methods. Quantum-inspired algorithms for search area 

exploration use superposition, interference, and entanglement more effectively than classical optimization approaches. 

Machine learning approaches have proven successful in the realm of materials research for data analysis and process 

automation. Nevertheless, the use of experimental machine learning techniques encounters difficulties in the realm of 

material identification owing to the scarcity of extensive and diverse datasets. The HTEM Database seeks to overcome this 
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limitation by providing a publicly accessible compilation of experimental data for inorganic compounds obtained via high-

throughput practical methods.  

The database architecture and content are constructed by conducting high-throughput testing and collecting data utilizing 

materials data infrastructure. The HTEM Database has comprehensive documentation on thin film inorganic materials, 

including detailed information on their crystal structure, chemical composition, synthesis circumstances, and optoelectronic 

property evaluations, among other aspects. The NREL LIMS streamlines the process of collecting, categorizing, and storing 

data, hence supporting chemicals research, and aiding the HTEM Database. Users may use a dedicated web interface to 

engage with the HTEM Database, which facilitates streamlined searching, filtering, and presentation of information. The 

HTEM Database is an invaluable resource for scholars interested in high-throughput experimental materials. The system 

provides enough data, simplifies searching and analysis, and creates opportunities for further study and growth. The database 

undergoes continual updates to address data processing difficulties and include new data. The HTEM Database plays a 

crucial role in developing materials research and the use of machine learning methods in these domains. 
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