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Abstract — Computational Intelligence (CI) models are established from biological paradigms and purpose to address
complex challenges. Probabilistic methodologies and soft computing, which incorporate various models of CI, are typically
employed in the domain of CI. Ontologies are fundamental in product design engineering process since they provide a
common basis for incorporating various information sources. This research reviews five major models of CI: artificial
intelligence, artificial neural networks, artificial immune systems, swarm intelligence, and evolutionary computation. The
paper discusses the origins and applications of every paradigm, as well as its application in product design engineering.
The study also reviews the functions of ontologies in the incorporation of information sources and facilitation of smart
algorithms and techniques in the domain of product design engineering. In addition, it assesses the application of data
mining, case-based reasoning, decision-making algorithms, hybrid techniques, qualitative reasoning, and process modeling
in product design engineering. This article ends with an examination of modification, differentiation, customization,
development, and building of process models within the field of product design engineering. It also reviews how CI
approaches may be employed in addressing unique process challenges.

Keywords — Swarm Intelligence, Computational Intelligence, Fuzzy Systems, Artificial Neural Networks, Evolutionary
Computing, Artificial Immune Systems.

I.  INTRODUCTION

Product design (PD) refers to the process of creating an item based on design concepts, such as models, drawings, prototypes,
or sketches. This process encompasses the whole lifecycle of the thing, including manufacturing, logistics, and marketing.
The design process of a product has many stages, including detail design, product planning, product styling, product
development, and concept design. Millward and Lewis [1] posits that product design places more emphasis on the act of
creation and production, as well as on aesthetic and cultural evaluations, compared to the conventional focus of (mechanical)
engineering. However, several publications fail to acknowledge the distinct contribution of industrial design within the
broader framework of product design, sometimes seeing it as only one step in a complex, multi-step process. According to
Kim, Joines, and Feng [2], industrial design (ID) is a part of product advancement process. They argue that engineers face
more complex technical problems in their design activities, which require greater advancement effort compared to the
problems addressed by industrial designers. Consequently, PD is often included as a part of the mechanical engineering
(ME) program or taught separately at design colleges as a distinct kind of ID. Nevertheless, ID may have a greater influence
on the process of PD, but this would need educational innovation and transformation.

Product design engineering is a multifaceted field that relies on and contributes to other disciplines, but lacks a well-
established formal structure. The multidisciplinary nature of PD engineering has led to the development of several
computational methods that have been documented in the exposition. The objective of this study is to examine the latest
advancements in Computational Intelligence (CI) as they relate to PD, and to organize these CI methodologies into a
comprehensive and cohesive framework. It is impossible to fully cover such a wide-ranging subject in a survey. An endeavor
has been undertaken to achieve equilibrium between the level of specificity and the accessibility of literary references. The
disparity in coverage is mostly attributed to the limited accessibility of information, rather than the significance of the subject
matter.

The field of Product Development Engineering (PDE) aims to merge the formerly separate disciplines of ME and ID. Its
goal is to cultivate individuals known as “integralists” who possess comprehensive knowledge and expertise in all aspects
of the product advancement process. The origins of this emerging field may be traced back to Glasgow, Scotland in the late
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1980s. The development of the manufacturing industry at that moment required a novel type of engineering professional
who has expertise in both the fields of engineering and design. The introductory PDE course was established in the late
1980s as a result of the partnerships between art & design, and mechanical engineering departments at the Glasgow
University. The principal objectives of the course were to connect two fields and put much emphasis of critical analysis of
the product design process.

Many product engineers have conducted studies, established complex designs, and effectively created different goods,
which are crucial for our daily routine. Product engineering expertise is in high demand among businesses across industries.
This paper delineates the many tasks of product design engineers and provides guidance for anyone interested in pursuing a
career in this field. Experienced manufacturers and analysts use computer-aided design (CAD) software to design a variety
of applications and industrial systems. From the early stages of idea generation to the final stages of manufacturing the
finished product, these experienced people play a role in every step of the manufacturing process and, moreover, their design
must conform to all relevant industry standards and product specifications, while also meeting customer needs.

This article reviews CI models and their applications in engineering. Several CI models such as artificial immune
systems, fuzzy systems, swarm intelligence, evolutionary computation, and artificial neural networks are the subject of this
article This addresses the complex design and explores the application of probabilistic methods further than these models
problems. The article also highlights the importance of ontologies in product development and technology design, as they
facilitate the creation of intelligent algorithms and provide a convenient framework for integrating data sources and then
displaying these insights use to create a value chain and have a more informed selection.

The rest of the article is arranged as follows: Fuzzy systems, swarm intelligence, evolutionary computation, innate
immunity, and artificial neural network research are among the CI models presented in Section II. Section III focuses on the
classification of CI tools, methods, and algorithms. In this section, ontologies, evolutionary computation, data mining, and
decision-making, hybrid algorithms, qualitative reasoning, and case-based reasoning concepts are critically reviewed.
Section IV focuses on the process perspective of product design engineering, focusing on typological characteristics of
processes, selection of CI approaches, and evolutionary computations and process perspective. Lastly, Section V draws a
conclusion to the research on the paradigms of CI within the field of product design engineering.

II. COMPUTATIONAL INTELLIGENCE PARADIGMS
This section examines five primary CI paradigms: NN, EC, SI, AIS, and FS. Fig 1 provides a concise overview of the
objective of the book. Probabilistic methodologies are often used with CI paradigms, as seen in the image. Soft computing,
a phrase introduced by Hiziroglu [3], refers to a distinct combination of paradigms, often including several computational
intelligence paradigms and probabilistic approaches. The arrows signify the potential for merging approaches from several
paradigms to create hybrid systems. The roots of each CI paradigm may be traced back to biological systems.

Neuron

Dendrites

Soma Axen terminals

Fig 2. A Biological Neuron

Fig 1. CI Paradigms

NNs simulate the functioning of biological neural systems, EC simulates the process of natural evolution, including FS
first appeared from studies on how creatures interact with their habitat, behavioral and genetic changes over time, AIS
simulates the functioning of the human immune system, and SI simulates the organisms living in colonies or swarms social
behavior.

Artificial Neural Networks

The brain functions as an intricate, non-linear, and parallel computational system. Neural systems can accomplish tasks like
pattern recognition, vision, and motor control at a far quicker rate than computers, despite events occurring in the
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milliseconds for neural systems and nanosecond range for computers. Furthermore, the capacity to acquire knowledge, retain
information, and make generalizations has led to investigations into biological brain systems computational simulations of
biological systems of brain, referred to as ANN. The human cortex is believed to have between 10 billion to 500 billion
neurons, and 50 trillion interconnection. Neurons are arranged into around 1000 primary sections, each containing around
500 NN. Will it then be feasible to accurately simulate the human brain? Currently unavailable. Present achievements in
neural modeling mostly focus on tiny artificial neural networks designed to address particular tasks.

Solving problems with a single aim may be very straightforward by using neural networks of modest size, taking into
account the limitations imposed by current computational storage and power capacity. The brain has the capacity to
concurrently tackle several issues by using various regions of the brain in a dispersed manner. We have yet to make
significant progress... Neurons are the fundamental components of biological neural systems. Fig 2 demonstrates that a
neuron is composed of an axon, dendrites, and a cell body. Neurons have extensive interconnectivity, with interconnections
occurring between the dendrite of one neural and the axon of another neural. This link is often known as a connection.
Indications go from the dendrites, via the cell structure, to axon, and then spread to all linked dendrites. An electrical impulse
is sent to the axon of a neural just whenever the cell “fires”. A neuron has the ability to either suppress or stimulate a signal.

Artificial neuron (AN) is a computational representation of a BN. Every AN takes indications from the habitat or other
AN, collects and processes these inputs, and when activated, sends an output signal (OS) to all interconnected ANs. Fig 3
depicts AN. The input signals (IS) are modulated either by inhibitory or excitatory effects, which are determined by positive
and negative numerical weights assigned to each link to the AN. The regulation of an AN's firing and the intensity of the
OS are governed by a mathematical operation known as the activation function (AF). The AN gathers and processes all
arriving inputs, calculating a net intake indication based on the corresponding weights. The net IS is used as the input to the
AF, which computes the OS of the artificial neuron.

hidden layer

Input signals —

welght

output layer

Fig 3. A diagram of AN Fig 4. A diagram of ANN

An ANN is a hierarchical network composed of artificial neurons (ANs). A neural network (NN) typically has an input
layer, single or multiple hidden strata, and an input stratum. The ANs in one stratum are interconnected, either completely
or partly, with the ANs in the subsequent strata. It is also feasible to have feedback links to prior levels. A conventional
neural network architecture is shown in Fig 4.

Evolutionary Computation

Evolutionary computing (EC) aims to replicate natural evolutionary processes, with a primary focus on the survival of the
fittest, meaning that the weaker individuals are eliminated. Survival in natural evolution is attained via the process of
reproduction. Offspring, derived from the genetic material of two or more parents, inherit a combination of traits from each
parent, ideally including the most favorable attributes. Individuals that inherit unfavorable traits exhibit weakness and
ultimately succumb in the struggle for survival. This phenomenon is seen in several avian species, when a single hatchling
successfully acquires a greater quantity of nourishment, hence enhancing its physical prowess, ultimately resulting in the
expulsion and subsequent death of its fellow siblings from the nest. Algorithms that evolve use a group of people, with each
person being known as a chromosome. A chromosome determines the traits of people within a community. Every individual
trait is denoted as a gene.

An allele is the term used to describe the value of a gene. Each generation involves people engaging in competition to
create children. Individuals with superior survival qualities have a higher likelihood of reproducing. Crossover is the process
by which offspring are produced by the combination of parental components. Every member of the population has the
potential to experience mutation, which modifies certain alleles of the chromosome. An individual's survival strength is
assessed by a fitness function that accurately represents the goals and limitations of the challenge at hand. Following each
generation, people may experience culling, which involves the removal of some individuals, or they may survive and
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progress to the next generation, a phenomenon known as elitism. In addition, phenotypes, which include behavioral features,
may have effect on the evolutionary process via two mechanisms: phenotypes can impact behavioral properties and genetic
alterations can develop independently.

Swarm Intelligence

The SI emerged from the examination of swarms, or colonies, of social beings. Research on the interpersonal conduct of
creatures in swarms has led to the improvement of very effective grouping and methods for enhancement. Research on
simulations into the coordinated but unexpected movements of birds and animals have contributed to the development of the
particle swarm optimization (PSO). Similarly, research on the foraging practices of ants has led to the creation of algorithms
for ant colony enhancement. PSO is a probabilistic enhancement method that mimics the collective interpersonal of flocks
of birds. Particle Swarm Optimization (PSO) is an algorithmic technique that involves a population-based search approach.
In this techniques, the individuals, identified as particles, are arranged into a classification known as a “swarm.” Every
individual in the swarm symbolizes a potential optimization's solution issue.

Within a PSO, every fragment is navigated through a search area with several dimensions. The particle's location in the
search space is modified based on its own experience as well as the experiences of nearby particles. Consequently, a particle
utilizes both its own best position and that of its neighbors to move towards an optimal solution. The particles exhibit a
behavior where they move towards an optimal solution while simultaneously exploring a broad region around the presently
the best option. The evaluation of each particle's performance, namely its proximity to the world minimum, is determined
by a pre-established fitness function that is directly linked to the issue being addressed. PSO has several applications such
as approximating functions, clustering data, optimizing mechanical constructions, and solving systems of equations.

Innate Immune Systems

The innate immune system (IIS) has a remarkable capacity for pattern recognition, enabling it to differentiate between
foreign cells (known as antigens or non-self) and the body's own cells (known as self). When the IIS comes into contact with
an antigen, it demonstrates its adaptive characteristics by storing the antigen's structure. This allows for a quicker response
to the antigen in the future. There are four models of the IIS that may be found in IIS research (see Table 1).

Table 1. Models of the Innate Immune System

Literature Model Description

Sattler [4] Classical The conventional perspective on the immune system is that it differentiates
perspective of the between the cells in the body and other foreign entities by using lymphocytes
immune system generated in the lymphoid organs. These cells acquire the ability to attach to

antigens via a process of learning.

Ada and Clonal selection The clonal selection hypothesis posits that active B-cells generate antibodies via

Nossal [5] theory a process of replication. The resulting clones undergo genetic mutations.

Aickelin and  Danger theory The danger hypothesis posits that the IS has the capability to differentiate

Cayzer [6] between antigens that are hazardous and those that are not hazardous.

Nk [7] Network theory Network theory assumes that B-Cells form a network. Upon encountering an

antigen, a B-Cell undergoes activation and then triggers the activation of all other
interconnected B-Cells in the network.

Fuzzy Systems

In traditional set theory, items are classified as either belonging to a set or not. Similarly, in reasoning with binary values,
the parameters must have values that are either O or 1. The conclusion of an inferencing process also has similar restrictions.
Human logic, however, is often not this precise. Typically, our reasoning and observations include a degree of uncertainty.
For instance, people has the ability to comprehend the statement: “Certain Computer Science students have the capacity to
code in the majority of programming languages.” However, how can a machine accurately depict and engage in logical
thinking with this particular piece of information? Fuzzy sets and fuzzy logic enable the process of approximation reasoning.
Fuzzy sets give a degree of confidence to the belonging to a collection as an element. Fuzzy logic enables the process of
drawing conclusions from ambiguous information, resulting in the derivation of new information, where each piece of
information is assigned a specific level of confidence. Fuzzy sets and logic enable the representation of intuitive reasoning.

III. TAXONOMY OF CI TOOLS, ALGORITHMS, AND METHODS
Consensus among experts indicates that CI will make a significant contribution to design automation. Algorithms of machine
learning integrate historical design data that is dispersed in time and place, resulting in a unified and comprehensible body
of design knowledge. The only obstacle is in the uniform depiction of this data. The possible applications of CI in engineering
for product design may be categorized into seven primary types. The classes are recognized and associated with the three
categories shown in Fig 5 of Table 2. Category | in Fig 5 has been omitted from Table 2 due to the computer code-
advancement technique necessitating a comprehensive coverage that could not be included in this work. The selection of a
CI technique for a certain category is determined by the extent to which the literature covers it. If a substantial gathering of
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studies was discovered, then a “x” was inserted in the corresponding item of Table 2. The next sections cover the texts
related to each of the seven techniques listed in Table 2.

Categories
I
[ | | I
Category 1: . Category 3: Category 4:
Development of] Category 2: Genetic Product
Object . coe
computer codes analogies Optimization

Fig 5. Categorization of designing techniques in engineering design of products

Table 2. CI techniques and investigation strategy groupings in Fig 5

Category 2; Category 3; Category 4;
Design Objects Genetic Analogy Optimization
Hybrid Approaches X X X
Qualitative Reasoning X
Case-Based Reasoning X X
Decision Making X
Evolutionary X
Computation
Data Mining X
Ontologies X
Ontologies

An ontology is a consensus-based collection of concepts and definitions that allows different parties to exchange
heterogeneous information using a shared language. “Intelligent” algorithms and approaches use knowledge structured inside
ontologies. The representation and nature of ontologies are crucial in the field of PD engineering. Ontologies serve as the
formal foundations for techniques that characterize knowledge as intricate arrangements. They are essential for category 2
perspectives, as shown in Table 2. Ruiz and Hilera [8] used engineering feature ontologies to create software that verifies
whether product configurations meet both organizational and physical limitations. Yoshioka et al. [9] created a model for
knowledge-based engineering that heavily relies on ontologies of physical ideas. These ontologies serve as “pluggable”
domain model inside the scheme. These ontologies of physical concepts serve as the shared foundation for integrating
disparate knowledge sources.

Design Modeling Design Modeling
System 1 System 2

Knowledge in modeling systems
Modeling knowledge
Knowledge about a Modeling
system

Modeling Building Knowledge

Semantics
Metamodel

Basic Vocabulary Concept
Relationship among Concepts
Basic Ontology Casual Knowledge

Syntax

Fig 6. The engineering knowledge structure model

51



ISSN: 2959-832X Journal of Computational Intelligence in Materials Science 2(2024)

The engineering knowledge structure model proposed by Wielinga, Schreiber, and Breuker [10] was built based on our
extensive research efforts. This framework assumes a hierarchical model seen in Fig 6. The bottommost layer delineates the
syntax for representing knowledge. The higher levels include the semantics of knowledge, where both the integration of
knowledge at the conceptual level and the integration of data at the operational level occur. The strata are partitioned into
three sub-layers. The first foundational ontology layer offers a shared language (or set of terms) for representing essential
physical concepts. These notions exhibit linkages, such as super-sub hierarchy and causality. The fundamental principles
covered in this foundational layer are used to depict connections among design modeling structures. Integration of data level
relies on the alignment of data across several design modeling tools. In order to do this, a model of concept of the design
item is constructed at the foundational layer.

The design object is represented as a network of ideas in a conceptual model known as a 'metamodel’. The second
intermediate layer encompasses knowledge pertaining to system modeling and the construction of models. This knowledge
includes instructions on using various modeling systems, as well as information on the output and input requirements of
these systems. This kind of information is referred to as “modeling knowledge.” The third higher layer pertains to the
representation of system-specific information that is included inside each system of modeling. Moon et al. [11] used
ontologies to construct and effectively implement a scheme for capturing and reusing understanding about item
functionalities in a major electric firm. The authors said that a crucial aspect of their structure was its capacity to articulate
the information that creators would normally rely on tacitly, and to facilitate the dissemination of this knowledge among
team members. Kakabadse, Kouzmin, and Kakabadse [12] used ideologies to establish a Web-based repository that
facilitates the decentralized creation of automobile factors. This was achieved by using regular Web technology and
standards. Utilizing the Internet for these objectives enables people to contribute and explore material utilizing widely
available and reliable mechanisms that are already established in other sectors.

Ding et al. [13] documented the creation of ontologies to enhance the exploration of design spaces using the semantic
matrix notion of the Web. The study being discussed is a component of the Geodiseproject, which aims to develop a
comprehensive web-based knowledge-based system (KBS) for the purpose of designing and optimizing processes related to
fluid dynamics. Huang, Trappey, and Yao [14] created agent-based systems that use ontologies to facilitate processes of
collaborative design. These systems do this by presenting users with a unified and integrated view of heterogeneous and
scattered sources of information. The University of Toronto's company Intelligence Laboratory has created a comprehensive
ontology-based system to model all aspects of a company, such as quality management, supply chain management,
requirements, and more. JuriSica, Mylopoulos, and Yu [15] used ontologies to examine needs in the field of software for
managing networks.

Data Mining

The amount of “legacy data” accumulated by the sector is increasing at an unusual pace. Processing and analyzing a
substantial amount of data may be challenging, but it has the potential to provide significant insights. Data mining (DM),
also known as knowledge discovery, offers techniques for efficiently exploring and condensing the existing data into a
format that is easy to use. DM may be used with other methodologies to cultivate sophisticated systems. It is classified as
category 2 (see Table 2) because it transforms create elements from the usually disorganized old information. Wang et al.
[16] introduced a DM approach that utilizes past design data to forecast product cost. The decision-making information was
extracted using a rough-set theory technique. Bansal and Priya [17] used data mining techniques to get information from
design processes that included a computer-aided design (CAD) system. A technique known as prolonged dynamic
programming was devised to retrieve the information.

Goncharenko, Kryssanov, and Tamaki [18] developed a design approach that utilizes information obtained from data
related to product lifecycle. Fahmi, Kashyzadeh, and Ghorbani [19] assembly data and analyzed manufacturing of rotors for
gas turbines to determine and measure the connections between vibration and balance data. This analysis led to enhancements
in the design of component tolerances. Delen et al. [20] used a decision-tree method to facilitate product creation by
examining top-level information, like culture of the manufacturing company, market position, philosophy, and strategy, as
well as consumer behavior. The acquired information was intended to be incorporated into the product development process.
La Rocca [21] used data mining techniques to extract expertise from disciplines associated with the design processes of
microtechnological devices. Liou and Chen [22] use data mining methods to construct based on TRIZ, semantic portals that
facilitate the reengineering of metal components into plastic.

Evolutionary Computation

Evolutionary computing (EC) refers to a category of global optimization approaches, which are inspired by the principles of
natural growth. This technique begins by fostering the formation of a collective of individuals who actively address a certain
issue. The initial population may be generated randomly using an algorithm. Individuals get a health assessment, and the
efficacy of their approach is measured to determine how well they treat the issue. Furthermore, some operators, such as
convergence, mutation, and replication, are subsequently applied to people who are impacted by natural evolution. A novel
population is generated by considering the fitness values of recently evolved individuals. In order to preserve the population
number in the ecosystem, some entities are eliminated. This approach is repeated until the termination requirements are met.
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Several evolutionary computational approaches have been devised, such as evolutionary programming, genetic algorithms
(GAs), genetic programming (GP), and evolutionary strategies (ES). The various methods are further upon in Table 3.

Table 3. Evolutionary computational approaches
Literature Approaches Description
An approximate representation of the 30,000 genes that make up a human body
may be shown as a vector consisting of the 4 letters (e.g., A, C, G, and T). If one

Holland [23] ifn(frtiltchms chooses the binary form, they may also be represented ones and zeros in
& succession. Regardless of their phenotypic characteristics (appearance), any two
persons only vary in a tiny proportion of their “genetic vectors.”
The GP develops a computer software using the plan programming linguistic as
Genetic the answer. The authors examined the correlation between the efficiency and
Koza [24] . intricacy of the developed structures. Using strategies for statistical search, the
Programming . . .
author presented a unique strategy to GP by fusing a local parameter tweaking
mechanism with a GP-based search with adaptation of tree topologies.
Juste, Kita, Evolutionary EP, cgmmonly referred to as eYolutlonary algorlthms (EA), integrates the ‘
. principles of the strongest survive and natural selection. EA manages structures
Tanaka, and Programming

population, which are originally generated randomly. These structures develop

Hasegawa [25]  (EP) by genetic operators, including selection, recombination, mutation, and survival.

Decision Making

Product engineering is a crucial component of makings choice. Sensible decision-making tools are particularly valuable in
PD engineering because to the intricate nature of the choices involved and the potential hazards connected with making
incorrect selections. The decision-making algorithms aim to maximize different design results, and as a result, they are
classified under category 4 in Table 2. Griffin, Winfield, and Douglas [26] created a Knowledge-Based System (KBS)
specifically designed for the purpose of selecting rolling element bearings. They used heuristic knowledge, with the
assistance of a manufacturer's collection, to formulate a solution. Van Der Gaag et al. [27] presented a CI methodology
known as signposting, which aids in decision-making throughout the design process. Signposting enhances one's
understanding by emphasizing the interconnections between design factors, hence facilitating both strategic problem-solving
and inference knowledge abilities.

To aid in decision-making during collaborative design, Gal et al. [28] created a decision-making network built on agents.
Within a setting that encourages goal-based bargaining, a software agent represents each designer. Bousquet and Page [29]
used agents to simulate the interactions across system design utilized by different teams working on intricate and extensive
design challenges. The negotiation process between agents was automated using an evolutionary technique, which made it
easier to share design solutions between different systems. Aliahmadi, Sadjadi, and Jafari-Eskandari [30] introduced a
technique for constructing decision-making systems based on decision theory and use the value of data. This strategy
considers the imprecision of data obtained from tests required to confirm important hypotheses for task completion, a
common occurrence in PD engineering scenarios.

Case-Based Reasoning

Case-based reasoning (CBR) is a methodology that seeks to replicate the human ability to adjust and repurpose answers from
familiar issues to unfamiliar ones. It presupposes that comparable issues can be resolved using comparable methods. A case
is a concise representation of an issue together with its corresponding solution. Novel issues are examined and contrasted
with established instances till an optimal correlation is identified. The answer of the complement case is used (and sometimes
modified) to address the new challenge. The performance of CBR is optimized when the library of known instances meets
two criteria: 1) each example accurately represents a specific class of frequent issues, and 2) each case exhibits some degree
of resemblance to a few other instances in the collection. The primary functioning components of CBR consist of collecting
and examining instances, generating a “similarity measure” for novel situations, and adjusting existing answers to address
new challenges. CBR is classified as a plan object (category 2, Table 2) method based on the way the examples are organized,
and it falls into category 4 (optimization) due to its spatial search features. CBR has been utilized in the development of
software with proven solutions.

Case-Based reasoning (CBR) may be used in various contexts depending on how similarity is defined. Bartsch-Sporl,
Lenz, and Hiibner [31] used CBR in conjunction with grammars devoid of context to simulate human thinking in evaluating
product requirements. Aamodt and Plaza [32] used CBR to simulate the deterioration of civil engineering structures,
specifically focusing on infrastructure. They employed a substantial amount of data, consisting of a huge number of cases,
to analyze the degradation and strength of these architectures. Bichindaritz [33] created a CBR approach specifically for the
conceptual layout of structures. The system facilitates the ranking breakdown of design instances, provides several
perspectives, and encapsulates the result of the design. There are several techniques for retrieving multiple cases, and the
modification of cases is achieved by a “replay” approach of existing procedures. It is important to understand that adaptation
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often involves a parametric procedure that necessitates a model with parameters for the thing being developed. Intelligent
systems might consider parametric models as their main focus.

Qualitative Reasoning

Qualitative reasoning enables the construction of models in situations where the connections between variables and
parameters are not clearly defined. These approaches aim to find optimal solutions for simplified or abstracted scenarios,
placing them in category 4 (see Table 2). Although they lack the ability to process intricate and specific “real life” data, they
may provide basic guidance to design engineers. The qualitative reasoning technique is very compatible with the information
that may be derived from the data sets. Bond graphs are very suitable for integrating process modeling components. The
following methods are used to clearly define the behavior of components.

1) Utilization of a restricted quantity of adaptable universal phrases and symbols to create a logical visual
framework that portrays the existence and interplay of influences affecting the dynamic functionality of the
system.

2) Facilitating the easy creation and modification of the structure, which is crucial in the design of a creative
system.

3) Utilize the model structure to systematically formulate a comprehensive and rational set of equations that are
suited for computer's system simulation.

Lamontagne and Plaza [34] outlined the use of bond diagrams inside systems of engineering, using a consistent set of
ideal components. They also presented established methods for converting these elements into a simulation model. In their
work, Itkonen, Ekman, and Kojo [35] examined the concept of bidirectional thinking as it relates to the field of engineering
for product design. Further research in qualitative logic, like Frank’s work [36], has focused on the use of engineering's use
of qualitative physics. Analogical reasoning is one of the qualitative reasoning theories that have been studied in relation to
product design engineering in these research (see [37]). Walgga, Zawidzki, and Lechowski [38] created a non-numerical
model of rigid-body physics using qualitative reasoning.

Hybrid Approaches

As various methodologies and procedures have developed fully, there has been a growing interest in integrating them. The
combination of many methodologies has resulted in hybrid methods that may alleviate the limitations of the individual
methods. Hybrid techniques include categories 2—4 in Table 2, since they integrate elements from all the main methods.
Sriram [39] devised a hybrid approach that incorporates procedural, programming with objects, and production rules
techniques to articulate heuristics in engineering in a blackboard knowledge-based system (KBS) for the purpose of
constructing liquid retention structures. The system may provide guidance in both initial design and subsequent design
phases. Abdullah et al. [40] devised a novel framework for processing of knowledge in mold design by integrating elements
of modelling of product, neural networks, frame-based knowledge-based systems (KBSs), and case-based reasoning (CBR).
It was observed that there was a significant improvement in design efficiency.

Tor, Britton, and Zhang [41] created a system that combines blackboard architecture with CBR to facilitate the planning
of stamping process in developing die design. The system's value lies in its ability to use both prior data and alternative
reasoning approaches in conjunction with Case-Based Reasoning (CBR). Several hybrid techniques belong to the realm of
soft computing methods and are extensively studied in various conferences and publications. The fuzzy set theory is a
significant factor contributing to the advancement of soft computing, as shown in [42] and [43]. Dam and Saraf [44]
described a noteworthy use of a genetic algorithm (GA) for the purpose of designing neural network architectures. The
integration of GA with neural networks has been shown to decrease the manufacturing applications and design complexity
due to computing. The use of programming in evolution was employed to modify preexisting design solutions inside a CBR.
It is stated that these “knowledge-based” methodologies have a wider range of applications compared to traditional case-
based design approaches. Li and Huang [45] used the process of analytical hierarchy technique in conjunction with neural
networks, fuzzy systems, and expert systems to create a tool for decision support for the design of adaptable manufacturing
systems.

IV. PROCESS PERSPECTIVE OF PDE
The product advancement procedures may be seen as objects that share similarities with the goods they create. This section
presents a classification of plan procedures based on the comparability between the operation features and the result. The
classification in this segment pertains to the three primary groupings of Table 4.
The aforementioned features will comprise the collection of constructions put out in this study. This will serve as a crucial
component of a cyber infrastructure for engineering product design.

Selection of CI Approaches

The typology described in Section IV-A might be used as a reference for choosing CI strategies. Let us investigate the
following hypothetical business as an example: The organization is very experienced, with substantial corporate design
expertise kept in many traditional databases, such as the CAD database. The organization aims to achieve incremental,
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platform-based modularity by using standardized interfaces, alternative design methodologies, and mass customization to
solve the pointed out process challenges. The solutions will rely on modifications to steps aspects due to the exchange of
procedural knowledge across groups via personnel moves. In regard to this, one may contemplate other CI approaches by
examining the relationship between process features and the previously mentioned categories. This decision posits that the
CI approaches pointed out in this manner would be most suitable for use by the firm.

Typological Process Features
Table 4. Typological features of the plan process
Characteristics Description
The primary and most evident distinction is that between platform-oriented and modular
procedures, similar to product advancement. Modular procedures consist of pre-existing
components that may be combined to form a complete process. The modules' functional nature
suggests that optimization methods, namely those categorized as 4 in Table 2, are likely to be
utilized. Platform-oriented procedures use shared foundations that are adapted to meet particular
requirements.
Similar to the classification of product platforms outlined in [46], processes may be built using
standardized components, fundamental components, shared architecture, and standardized
interfaces. Procedures that rely on standard constituents are constructed by combining individual
constituent procedures. The overall architecture of these operations is determined whenever a new
procedure is created.
The standardized processes, referred to as such in this context, are derived from widely-used
process models designed to achieve certain objectives, such as implementing best systems.
Alternatively, processes might be either delayed differentiation operations or early differentiation
alterations. This categorization focuses mostly on optimization, namely the identification of an ideal
process that aligns with corporate and other limitations. As a result, it falls under category 4 of
Table 2.
Operations may be usually adjusted for three primary motives. Alterations may be made to tailor
Modification the steps for usage in a different context. Steps may be modified for advancement, either gradually
via constant progressively or through more drastic reengineering methods.
Processes may be classified based on the extent to which they are reused. Distinct procedures that
are not intended to be reused, in contrast to the steps created following the concepts of mass
Customization customisation. Regarding the latter, our intention is to identify certain process characteristics in
advance as variables that are likely to vary depending on how the procedure is implemented.
Considering procedure components is similar to the design items belonging to category 2 (Table 2).
Processes may be distinguished based on the manner in which they are developed, similar to the
recognized types of product design: redesign, variant design, or inventive design. All the strategies
Construction are classified as the fourth category (see Table 2) because the creation of the new procedure is
mostly focused on achieving the desired goals. In addition, reverse and variant-engineered
approaches may also be classified as category 3 if they rely on transformative similarities.
Operations may also be characterized based on their temporal evolution. Both steps components
and data elements may be considered as design objects, which is a defining attribute of the second
category (see Table 2). If the particular changes throughout time use the transformative analogy,
then these procedures fall under category 3.

Modularity

Platform
Orientation

Differentiation

Evolution

Evolutionary Computations and Perspectives of Processes

Process modeling (PM) encompasses two concepts: 1) Parallel to the horizon or perpendicular to the vertical axis. 2)
Perpendicular to the horizon or parallel to the y-axis. The development of a process model often involves both vertical and
horizontal expansion, rather than being created at a single level. The topmost node in the hierarchy symbolizes the
comprehensive procedure that is divided into more specialized parts. A network of activities is often found in the most
comprehensive form (the horizontal notion). The use of notions from evolutionary computation will be used to support the
horizontal concept in PM. The practicality of using evolutionary computing, namely Genetic Programming (GP), is shown
in Fig 7.

The model shown in Fig 7(c) is the result of applying the crossover operator (CO) as in Fig 7(a) using the submodel as
in Fig 7(b). One of the numerous operators stated in GP that may be applied to engineering for product design is the CO
shown in Fig 7 (see, for instance, the operators given in [47]). The principles of evolutionary computation may be used to
facilitate the horizontal idea of modeling process. The computational evolution usage in modeling of horizontal processes is
shown via the utilization of three specific activity operators. 1) Focus on a certain area or field of expertise. 2) Formulate a
general statement or principle that encompasses several instances or situations. 3) Undergo genetic mutation. To illustrate
these operators, let's examine the structure shown in Fig 8 (a).
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Fig 7. Crossover operator illustration in a model Fig 8. Operators in the model of activity. (a) Model of
of procedure reference. (b) Generalization. (c) Specialization. (d)
Mutation

Generalization operators modify the structure shown in Fig 8 (a) to create the structure shown in Fig 8 (b) by adding
activity 5. Furthermore, the processes of mutation and specialization are shown in Fig 8 (¢) and (d). Furthermore, algebra
may be used to define mechanisms, inputs, controls, outputs, and logical connections, in summation to the activity operators.
A connection or an EXCLUSIVE would become an OR connector if the generalize operator was applied to it. Data mining
is a technology that may enhance the autonomy of process models. As an example, a decision made by an algorithm of data
mining may choose the route {1-2-3} in the model shown in Fig 8 (a), relying on real-time data.

V. CONCLUSIONS

This study examines several paradigms of Computational Intelligence (CI) and their practical implementations in the field
of product design engineering. The five major models discussed include EC, AIS, SI, ANN, and FS. The models are based
on biological structures and seek to mimic the performance of natural processes. The research seeks to put more emphasis
on ontologies in the field of product design engineering, as they establish a common basis for the incorporation of data
sources, and allowing the establishment of smart algorithms and techniques. The paper also covers data mining approaches,
which are capable of effectively evaluate and summarize existing information into formats, which can be effectively used.
Evolutionary computing is a critical optimization approach, which draws inspiration from the concepts of natural
development. This process entails creating a group of individuals to handle certain issues and employ operations such as
selection, replication, mutation, and convergence to mimic natural evolution.

The examination of decision-making approaches integrates knowledge-based models, case-based reasoning, and agent-
based networks. The approaches seek to optimize design outcomes and enhance insightful decision-making at each design
process phase. The examination relates to the application of hybrid approaches and qualitative reasoning as a critical
approach for establishing models and incorporating diverse processes and methodologies. The methodologies enhance the
efficacy and efficiency of product design engineering. The article further categorizes the processes of product development
into modularity, process perspectives, and platform orientations. The relevance of modification, differentiation,
customization, development, and creation of process models in accomplishing particular objectives and adjusting to different
contexts is emphasized. In general, the article provides a critical review of the different approaches and paradigms within
the field of computational intelligence (CI) and their practical application in product design engineering, It concentrates on
the relevance of employing these approaches to increase efficacy and productivity of the design process.
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