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Abstract – The traditional methods employed in the investigation of new materials, specifically the empirical and density 
functional theory (DFT) approaches, are insufficient to satisfy the requirements of modern materials science. This can be 
attributed to the prolonged development cycles, suboptimal efficiency, and exorbitant costs. The utilization of machine 
learning (ML) is a common practice in material detection, analysis, and design owing to its exceptional predictive 
capabilities, efficient data processing, and swift development cycle. This can be attributed to its relatively low 
computational expense. This paper provides an analysis of the essential operational procedures that are involved in the 
analysis of material properties using ML techniques. Furthermore, the present study provides a summary of the recent 
utilization of ML algorithms in diverse established domains of materials science, along with a discussion on the requisite 
improvements for their widespread implementation. The utilization of ML has been widely implemented in various fields 
of materials science. This paper offers an academic analysis of the paradigms of ML in the context of materials science. 
The article provides a clear and comprehensive overview of the essential steps involved in data processing, which 
encompass sample construction, data modelling, and model evaluation. The present manuscript presents a comprehensive 
survey of the application of ML methodologies in the domain of material science. 
 
Keywords – Materials Science, Machine Learning, Artificial Intelligence, Material Analysis, ML Algorithms. 
 

I. INTRODUCTION 
The scientific pursuit of artificial intelligence gave rise to Machine learning (ML). In the 1950s, various symbolic 
approaches were utilized to address the matter of knowledge acquisition by machines. Following this, a comprehensive 
investigation was carried out on connectionist methodologies, encompassing neural networks and perceptrons. 
Subsequently, several methodologies based on statistical learning theory (SLT) were presented, such as decision trees 
(DTs) and support vector machines (SVMs). Currently, there is an increasing fascination with diverse innovative machine 
methodologies, such as deep learning, for the objective of scrutinizing vast datasets, which has attracted the consideration 
of both academic and industrial domains. The term "machine learning" pertains to a methodology that facilitates the 
automation of the analytical model construction process. Machine learning (ML) is a computational methodology that 
utilizes iterative algorithms to extract underlying patterns from data, allowing computers to uncover hidden insights 
without the need for explicit programming of search parameters. 

The materials science field employs both computational and experimental techniques to investigate the materials’ 
characteristics and composition. Subject matter experts (SMEs) with significant experience spanning multiple years or 
even decades utilize their knowledge to create innovative materials that demonstrate the desired structure-property 
relationships. Over the past decade, the domain of ML has undergone substantial growth and has more recently penetrated 
scientific disciplines such as materials science, physics, healthcare and astronomy. Presently, scholars in the domain of 
materials science are employing different approaches of ML in order to extract valuable insights from pre-existing 
computational and experimental data. The aforementioned methodology is being utilized in order to conduct material 
characterization, predict molecular properties, expedite simulations, discover new materials, and generate models. The 
swift advancement of material assessment technology has led to a surplus of data that exceeds the analytical capabilities of 
domain specialists. The proliferation of literature, including review and perspective articles, concerning the employment of 
ML in the realm of material science is suggestive of the increasing importance of ML as a mechanism in this area. 

The extensive utilization of ML and its ubiquitous integration in field of scientific study has introduced multiple 
resources, which are easily obtainable for those who wish to embark on their journey in this domain. These resources have 
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the potential to appear in either of two forms. Commonly encountered resources in the domain of ML are generally broad 
in nature and take the form of instructional literature or multimedia, web-based curricula focused on ML, and ML 
certifications. These models often employ openly accessible datasets and employ a generalized ML approach that is well-
suited for educational purposes and easily understood by inexperienced students. It is a prevalent issue that sources which 
employ curated and sanitized public datasets often fail to demonstrate the necessary techniques for accommodating the 
complexities inherent in domain-specific scientific data. Small and medium-sized enterprises (SMEs) have the option to 
access alternative sources of ML resources through the dissemination of knowledge by experts in their respective research 
domains. The aforementioned resources include review articles, research publications, publicly accessible datasets, ML 
toolkits, and software packages. The resources mentioned above are considered to be more effective than traditional 
educational materials because they enable a more thorough understanding of the context and provide a perspective that is 
familiar to the expert in the subject matter.  

Numerous scholarly articles on ML in the field of material science, such as such as [1], have focused on particular 
phases of ML pipeline, including modelling techniques and feature representation. On the other hand, certain articles, such 
as [2], focus on a specific set of issues within a given field, such as utilizing image-based methods in the realm of material 
science. The aforementioned articles offer significant perspectives on the comprehensive investigations being carried out 
in the realm of material science through the utilization of ML. The analyzed research publications presented in these 
articles illustrate that the results are the product of a multifaceted decision-making procedure that is inherent to the 
utilization of ML in a new problem area. The process of decision-making is implicit in the existing body of published 
literature. Numerous scholarly articles have been disseminated regarding the most effective methodologies for integrating 
ML techniques into the field of material science. Nevertheless, the existing body of literature does not provide explicit 
documentation of the process of decision-making. 

The present manuscript provides an examination of the ML paradigms employed within the domain of materials 
science. The essential steps involved in data processing, such as constructing a sample, creating a data model, and 
evaluating the model, are thoroughly defined and analyzed. The present study offers a comprehensive survey of the 
application of ML methodologies within the domain of material science. The current manuscript is structured in the 
subsequent manner: Section II focuses on the paradigms of ML in materials science, while Section III discusses the 
applications of ML in materials sciences. These applications include material discovery and component prediction. Lastly, 
Section IV presents a conclusion as a well as future research directions.  

 
II. PARADIGMS OF ML IN MATERIALS SCIENCE 

One commonly accepted definition of ML is represented by the notation < 𝑃𝑃,𝑇𝑇,𝐸𝐸 >, where 𝑃𝑃,𝑇𝑇, and 𝐸𝐸 correspond to 
performance, task, and experience, respectively. According to Raymond [3], the primary inference is that programmes can 
acquire knowledge from experience E concerning a particular task T and based on performance measure denoted by P. The 
program's capacity to perform tasks within 𝑇𝑇, as evaluated by 𝑃𝑃, is enhanced as a result of its experience E. Typically, the 
development of a ML framework is deemed necessary in the context of utilising ML techniques to tackle a specific issue 
within the domain of materials science. The overarching model of these ML structures is presented as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 +  𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆 +  𝐺𝐺𝐴𝐴𝑆𝑆𝐴𝐴 =  𝑀𝑀𝐴𝐴𝑀𝑀𝑆𝑆𝐴𝐴                                                                       (1) 

The ultimate aim of the inquiry is commonly expressed as an objective function that represents the stated problem. The 
term "sample" denotes a distinct population subset, which has been chosen for analysis in a predetermined manner. The 
process of data preprocessing, which involves data cleansing and feature manipulation, is commonly applied to change the 
initial set of data into sample data. The procedure of data cleansing encompasses identifying and eliminating deficient, 
erroneous, imprecise, and immaterial elements of the data. The data that are deemed inappropriate or lacking in refinement 
are subsequently substituted, altered, or expunged in accordance with the appropriate protocols. The process of feature 
engineering involves a range of methods, such as feature construction, feature construction, feature selection, feature 
learning, and feature extraction. These techniques rely on domain knowledge to generate meaningful features that facilitate 
the efficient operation of ML algorithms.  

Feature engineering is a vital component in the execution of ML, and it presents significant difficulties and expenses. 
As stated by Mohan, Neogy, Seth, Garg, and Mittal [4], the Algorithm is a self-contained and comprehensive sequence of 
operations that includes both ML algorithms and model optimization algorithms. Decision Trees (DT), Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), are commonly employed ML algorithms. The optimization of models 
is predominantly accomplished by employing simulated annealing algorithms (SAAs), particle swarm optimization (PSO), 
and genetic algorithms (GAs) algorithms. The Model refers to a depiction of a particular system that employs 
computational principles and communicates with the algorithm obtained from the Sample. 

 
ML Steps in Materials Science 
The diagram depicted in Fig 1 portrays the methodology involved in creating a ML system, consisting of three discrete 
phases: sample generation, model creation, and model evaluation. 
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Fig 1. The overarching methodology of ML in the field of materials science. 
 
Sample construction 
The process of gathering primary set of data in the materials science field entails obtaining empirical measurements and 
conducting computational simulations. Data often display incompleteness, noise, and inconsistency, which underscore the 
importance of data cleaning during sample construction from the initial data. In addition, there are various conditional 
variables that influence the retrieved sample, and most of these variables are irrelevant to the decision factor/attribute. In 
the realm of research concerning the forecast of the ionic conductivity of Li, it is noteworthy to acknowledge that even 
though different external and internal variables may potentially impact the ionic conductivity, about 4 of them are 
considered to be of utmost significance in comparative experiments. The aforementioned variables encompass mean 
volume, ion diffusivity, temperature of experimentation, and transition temperature. The aforementioned data has been 
obtained from a study that has been conducted by Kuanr and Mohapatra [5]. Thus, it is imperative to utilize a suitable 
feature selection methodology to identify the attribute subset that will be employed in the end simulation.  

The utilization of big data has significantly enhanced the information resources available in the field of materials 
science. Büchi, Festic, and Latzer [6] presented a seven-fold categorization of the effects of big data, which includes the 
following dimensions: visualization, veracity, variety, value, variability, velocity, and volume. The factors previously 
mentioned served as obstacles to the employment of data processing approaches in the materials science field. The impact 
of this aspect on the effectiveness of the ML model is significant and crucial in the field of ML. In general, the data 
processing procedure comprises two fundamental constituents, specifically feature engineering and data selection. 

 
Data selection 
The procedure of selecting data entails a thorough evaluation of diverse factors, including but not limited to the nature, 
standard, and structure of the data. The utilization of data of superior quality can help to reduce the presence of missing, 
redundant, or erroneous data. Thus, it is crucial for scholars to obtain information from reliable databases. The Unite 
States, in 2011, launched an initiative known as Materials Genome to focus on the significance of big data following the 
advancement of materials science. The initiative fervently promoted the establishment of an enhanced material repository. 
The domain of computational materials science has made use of various material databases such as the Open Quantum 
Material Database, Harvard Clean Energy Project, Material Project, AFLOWLIB, Inorganic Crystal Structure Database, 
and Computational Materials Repository. 

Moreover, the application of data mining approach has been employed to retrieve essential scholarly articles pertaining 
to materials with the aim of improving pre-existing databases. The utilization of ML techniques has been proposed by 
Punnam, Dutta, Krishnamurthy, and Surasani [7] to train a model using failure data obtained from unsuccessful 
experiments. This approach is suggested as a means of implementing data processing methodologies in the field of 
materials science. The scholars utilized empirical data derived from hydrothermal synthesis reactions that were either 
unsuccessful or suboptimal to develop a ML algorithm that aids in predicting the formation of template vanadium-selenite 
crystalline materials. The model described above demonstrates enhanced performance in contrast to traditional manual 
analysis methods. It achieves a predictive accuracy of up to 89% in forecasting the formation aspects on novel inorganic 
products that employ organic templates. 

The field of materials science could be grouped into 4 major categories of data: experimental and simulated material 
properties encompassing physical, chemical, structural, thermodynamic, and dynamic properties, the data for chemical 
reaction integrating temperature and rate of reaction, image data including literature-retrieved data, and scanning electronic 
microscope photographs and images of different materials surfaces. The data that has been presented can be categorized 
into three distinct classifications: discrete data, which pertains to texts; continuous data, which pertains to vectors and 
tensors; and weighted graphs. The difficulty in consolidating information from diverse databases is attributed to the 
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presence of dissimilar data structures and disparate storage sites. Furthermore, the designated data structure is dependent 
on the specific ML algorithm employed. Therefore, it is crucial to establish a uniform data types and choose a suitable 
representation of data in order to facilitate ML algorithms in the data processing field. Frequently utilized data 
representations encompass SMILES notation, fingerprint, Coulomb matrix, and weighted graph. 
 
Feature engineering 
After the data selection process, it is imperative to engage in feature engineering, which entails recognizing and extracting 
pertinent attributes that are applicable to the desired prediction target. The term "feature engineering" pertains to the 
methodical approach of extracting pertinent and enlightening features from unprocessed data, in order to facilitate the 
efficient implementation of algorithms. The establishment of the maximum achievable performance threshold for a ML 
model is frequently dependent on a crucial factor, specifically, its overall effectiveness.  

Traditional ML methods, commonly referred to as shallow learning, require the manual identification and selection of 
features. ML techniques were utilized by ur Rehman, Pei, and Yasin [8] to explore the characteristics and possibilities of 
Heusler compounds. The present study conducted a range of experiments to determine 22 discrete characteristics, which 
encompassed, among other things, the element B group number, the general p-valence electron number, and the disparity 
in A/B radii. The principal aim of this investigation was to augment the capacity of computational systems to detect covert 
associations. Khan, Ali, Ahmad, Hayat, and Pi [9] were able to identify a specific subset of 14 features from an initial pool 
of 30 features. The aforementioned characteristics comprised the aggregate ionic charge, tolerance factor, electrons in p 
orbitals, and the summation of p and s orbital radii. The chosen characteristics were employed to educate a ML algorithm 
with the objective of forecasting unexplored hybrid organic-inorganic perovskites (HOIPs) for the purpose of photovoltaic 
usage.  

However, the analogue process of feature engineering is not a preferred approach. The difficulties arising from the 
limitations of human perception and understanding make it challenging to identify the most significant features for 
accurately forecasting the desired result. In addition, the manual process of feature engineering necessitates more 
computational and labor expenses. The advent of deep learning in recent times has disregarded the necessity for manual 
feature engineering that has the potential to establish a trend in the domain of ML in the context of materials science. 
 
Model building 
Through the implementation of a suitable structure and a substantial quantity of information, it is feasible to develop a 
framework that can be employed for the examination of substances. The procedure of modeling entails the meticulous 
selection of appropriate algorithms, the training of these algorithms using pertinent training data, and the production of 
accurate predictions. The discipline of ML could be categorized into 4 primary sub-disciplines, namely unsupervised 
learning, supervised learning, reinforcement learning, and semi-supervised learning. Supervised learning is a type of ML 
that entails the presence of a teacher, whereby the training data is annotated with corresponding outputs. Unsupervised 
learning differs from supervised learning in that the training data utilized does not possess labeled outputs.  

In the domain of ML, the technique of semisupervised learning entails the utilization of a subset of data that has been 
labeled in conjunction with a more extensive collection of unlabeled data to facilitate the training process. In general, the 
amount of unannotated data that is accessible tends to exceed that of annotated data. Reinforcement learning is a technique 
that relies on environmental reinforcement signals to evaluate the effectiveness of actions generated by the model, as 
opposed to providing explicit instructions to the model on how to generate correct actions. This methodology facilitates the 
enhancement of methods for adapting to the surroundings. Algorithms are readily available to implement the four distinct 
categories of ML techniques as previously outlined. The aforementioned categories can be broadly categorized into two 
distinct groups, specifically shallow learning and deep learning. Conventional ML models frequently utilize shallow 
learning techniques such as support vector machines (SVM), artificial neural networks (ANN), and decision trees (DT), for 
linear classification. 

 
Support vector machine 
The Support Vector Machine (SVM) represents a linear classifier frequently employed for binary classification endeavors. 
The SVM algorithm is proficient in discerning a hyperplane of N-1 dimensions for a given set of data points that are 
situated in an N-dimensional space. For instance, consider the classification of 2D datasets. The hyperplane exhibits the 
capacity to effectively subdivide the training dataset into 2 different groups. If the algorithm encounters data that cannot be 
identified, it will utilize the classification model mentioned earlier to analyze the dataset. Fig 2A displays the methodology 
employed by a lineal SVM. The SVM was first introduced in 1964 and has undergone substantial progress since the 1990s, 
resulting in the creation of numerous enhanced algorithms. This algorithm has been employed in diverse fields, including 
but not limited to facial recognition, text classification, biomedical research, and other pattern recognition tasks. 

The utilization of the SVM algorithm for the categorization of compounds linked to a target drug has yielded 
exceptional classification efficacy. Furthermore, SVM have demonstrated efficacy in the identification of the drug that 
exhibits the highest similarity to the focus drug in the main screening process. Moreover, the SVM is a suitable method for 
discerning the connections between structure and property. The zeolite synthesis process involved the use of different 
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synthesis factor, such as the first gel level, temperature, time, and the reaction process, which were employed by Hikichi et 
al. [10] as inputs. By utilizing this methodology, the researchers achieved accurate prognostications pertaining to the 
structural elements and thermodynamic characteristics of the resultant commodities. 
 

 
Fig 2. The provided visual representations depict (A) the SVM, (B) the decision tree, and (C) the artificial neural 

network 
Naive Bayes classifier 
The topic of the Naive Bayes classifier has been widely researched since the 1950s. The system consists of a collection of 
straightforward probability classifiers, which relies on the Bayes theorem, based on the assumption of significant 
independence among the features. The procedure for training classifiers is not dependent on a single algorithm, but rather a 
set of algorithms that function on the assumption that every characteristic of a particular sample is autonomous of the rest. 
In the process of object classification, the category with the highest probability is typically assigned to the object, assuming 
that the probabilities for each category have been acquired. The maximum probability estimation technique is frequently 
employed to ascertain the parameter of the naive Bayes model in diverse practical contexts. Consequently, it is feasible to 
implement the naive Bayes model in situations where the Bayes probability or a different model is not utilized. The Naive 
Bayes classifier is considered advantageous due to its utilization of minimal parameter estimation, specifically the variance 
and mean of every variable, from a limited set of sample data to produce forecasts. Consequently, it is commonly utilized 
to forecast the efficacy of a particular methodology, e.g., fabricated formula for an original compound. 
 
Decision tree 
The DT (Decision Tree) method is a viable approach for approximating discrete functions. The methodology employed in 
this study is a conventional classification approach that seeks to achieve accurate sample categorization by deriving a 
collection of classification protocols from the sample data. The DT layout is presented in Fig 2B. The Iterative 
Dichotomiser 3 (ID3) algorithm, which forms the foundation for Decision Trees (DT), was created by J. Ross Quinlan in 
the 1960s. The utilization of the ID3 method was subsequently implemented to augment the C4.5 algorithm via diverse 
approaches, including its pruning mechanism and attribute selection criteria. The decision tree (DT) methodology 
generally comprises three fundamental phases, namely, feature selection, DT generation, and the elimination of 
superfluous DTs. The main purpose of feature selection is to preserve only those features, which provide satisfactory 
performance of classification, while pruning is intended to simplify and generalize the tree. It is imperative to choose a 
decision tree that displays minimal inconsistency with the training data and adequate generalizability, as there may be 
several decision trees, which can efficiently categorize the training dataset.  

The utilization of Density Functional Theory (DFT) was implemented by Gao et al. [11] in order to produce novel 
AB2C Heusler compounds. The training dataset was constructed by utilizing the ASM Alloy Phase Diagram Database, 
and the Pearson's Crystal Data. The scope of data collection was restricted to the subsequent items: The three components 
demonstrate thermodynamic stability within their respective phases. It is worth mentioning that the aforementioned 
components do not encompass noble gases, actinide or radioactive compounds, or hydrogen. Furthermore, they 
demonstrate a stoichiometric ratio of 1:2:1, which is considered ideal. A collection of twenty-two attributes, encompassing 
element B group number, and the aggregate p valence number electrons, the radius difference between elements A and B, 
and the corresponding electronegativities of the elements, were chosen to delineate the characteristics of the Heusler 
compounds. The random forest methodology was employed to combine the results of various predictors, each of which 
was trained separately, through the use of multiple decision trees. A subset of the complete dataset is utilized to train 
Decision Trees for sub-prediction. 
 
Artificial neural network 
Huang [12] developed the MP model as a mathematical framework. The MP model by Tartaglione, Bragagnolo, Odierna, 
Fiandrotti, and Grangetto [13] presented a meticulous mathematical depiction of neurons and network structure, 
showcasing the capacity of an individual neuron to perform logical operations. This event signified the beginning of ANN, 
which is a data processing model that comprises interconnected processing units, commonly referred to as neurons. It 
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exhibits nonlinear and adaptive behaviour. The present text outlines an information processing architecture that is 
nonprogrammed and adaptive in nature. This architecture employs network transformation and dynamic behaviour to 
achieve parallel and distributed data processing. The key aim of this system is to replicate the cognitive abilities of the 
human nervous system in information processing. The Artificial Neural Network (ANN) is a multidisciplinary system that 
integrates the fields of neuroscience, computer science, and artificial intelligence. Fig 2C illustrates the architecture of the 
ANN. 

Artificial neural networks (ANNs) are composed of interconnected neurons that are arranged into layers and possess 
the ability to represent a variety of objects, including concepts, words, abstract patterns, and features with significance. The 
Artificial Neural Network (ANN) is comprised of three discrete layers, namely the hidden layer, output layer, and input 
layer. The function of the input layer is to receive data or signal from the external environment. The ultimate stratum of the 
system generates the refined outcomes. The intermediate layer, which is positioned between the output layer and the input 
layer, is not perceptible from outside the network. The software performs calculations by utilizing its basic operation. The 
input dataset of ANN is concatenated into a novel vector and thus changed to matrix before being being processed by the 
network.  

During the transmission of data across the system, the i-th neuron found in the input layers executes a multiplication 
operation on the input data utilizing the weight Wij. The resultant output is subsequently conveyed to the j-th neuron 
situated in the succeeding layer. The weight in the artificial neural network (ANN) is responsible for representing the inter-
neuron connectivity of the neural network. The ANN can adjust this weight to enhance the general model performance. 
The aggregation of the weighted inputs originating from the neurons situated in the hidden layer is integrated with the bias 
term and subsequently subjected to the activation function prior to being conveyed to the subsequent layer. The final 
output is projected by applying an efficient function of transformation in the output layers. The key merits of Artificial 
Neural Networks (ANN) are as follows: The system exhibits a capacity for autonomous learning, an element for 
associative encryption, and proficiency in swiftly identifying optimal solutions. 

Around 40 unique models of neural networks have been proposed, including but not limited to perceptrons, 
backpropagation networks, self-organizing maps, Boltzmann machines, and the Hopfield network. ANN has been widely 
utilized in various domains of materials science, including quantum computing, materials property evaluation, and 
nanomaterial synthesis, among others. Even though shallow learning could produce significant results in different 
materials science field, it is faced with several challenges. It is important to acknowledge that shallow learning algorithms, 
despite their capacity to reduce computational costs, are incapable of attaining commensurate levels of accuracy with DFT 
across various tasks. The utilization of shallow learning algorithms requires the involvement of researchers with domain 
expertise to manually engineer features that are suitable for the input data. The aforementioned phenomenon results to a 
reduction in the model’s accuracy.  

Recent progress in the field of deep learning has resulted to novel advancement in the various applications of data-
driven approaches in materials science. As mentioned earlier, the methods of shallow learning, which rely on linear 
classification and analogue feature extraction, are aptly effective for linear classification-based tasks. Nonetheless, the 
accomplished dimensions of performance are insufficient in the context of nonlinear classification tasks. Empirical 
evidence suggests that deep models outperform shallow models in addressing nonlinear tasks. The utilization of a 
nonlinear cascade processing unit is credited for the extraction of inherent features. The methodology described involves 
identifying lower-level characteristics to obtain a wider, more abstract depiction of feature classifications. 

Currently, deep learning exhibits strong effectiveness across various fields including but not limited to image 
identification, speech interpretation, comprehension of natural language, biomedical research, and others. Various 
architectures, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), deep coding networks 
(DCNs), and deep belief networks (DBNs), have shown remarkable effectiveness in the domains of materials detection, 
quantum chemistry, and materials design and analysis, within the discipline of materials science. The following section 
will provide an overview of CNN and RNN. The following methods will not be elaborated on in great detail: The text 
presents an analysis of three notable deep learning methodologies, specifically DBN, deep stacking network, and deep Q 
network. These techniques possess the ability to not only recognize and categorize data, but also to produce data. Deep 
stacking networks are integrated with different blocking networks and can be readily trained through a supervised 
methodology. Conversely, the deep Q network signifies a foundational algorithm, which merges reinforcement learning 
and deep learning, thereby facilitating comprehensive learning to an action from perception.  

The inadequacy of material databases poses a substantial obstacle to the effectiveness of deep learning in tackling 
various predicaments in the realm of materials science. Furthermore, the protracted duration necessary for training and the 
constrained interpretability of deep neural networks (DNNs) could potentially lead to suboptimal performance in 
comparison to shallow learning methodologies when tackling specific issues. Therefore, the choice of the algorithm for 
modeling ought to be predicated on the particular task being undertaken. 

Convolutional neural network 
The Convolutional Neural Network (CNN) is a variation of the Artificial Neural Network (ANN) that functions in a 
unidirectional manner. The Convolutional Neural Network (CNN) is a computational framework that is based on 
fundamental principles of both complex and simple visual neuroscience cells. The convolutional neural network (CNN) is 
capable of accepting images as input without the need for feature extraction and data reconstructions, which are 



 
ISSN: 2959-832X                  Journal of Computational Intelligence in Materials Science 2(2024) 

29 
 

commonly, involved in traditional image recognition algorithms, by integrating the artificial neural network (ANN) with 
discrete convolution for image analysis. Kunihiko Fukushima, in 1980, presented the neocognitron, a model of neural 
networkdesigned to enhance visual pattern recognition. This model is considered a precursor to the CNN. Following 
multiple endeavors by Wu [14] to initiate the learning of multi-layered networks utilizing diverse techniques, the 
effectiveness of convolutional neural networks was limited by inadequate computational resources as the network's depth 
rose. From 2006, the improved processing unit for graphics has become a widely used computational tool, facilitating the 
progress of Convolutional Neural Networks. 

 
Recurrent neural network 
The convolutional neural network (CNN) demonstrates a deficiency in inter-neuronal connections within the same layer, 
leading to a one-way transmission of information to the hidden layer from the input layer, ultimately resulting in the output 
layer. As a result, CNNs face a challenge when it comes to processing correlated data. Consequently, it is advisable to 
utilize a Recurrent Neural Network (RNN) to effectively manage sequential dataset. RNNs are a form of neural networks 
that maintains a state representing the output of the initial time phase. This state is then combined with the input layer data 
to determine the present output. The representation of the present condition of a Recurrent Neural Network (RNN) is 
denoted by Si, wherein 𝐴𝐴 signifies the count of iterations. The network's input and output are represented by xi and yi, 
correspondingly. The utilization of the aforementioned variables can be employed to compute the present condition of the 
network. 

𝑆𝑆𝑖𝑖 = 𝑓𝑓(𝑊𝑊 ∗ 𝑆𝑆𝑖𝑖−1 + 𝑈𝑈 ∗ 𝑥𝑥𝑖𝑖)                                                                                  (2) 

While f represents a nonlinear element W and U are the parameters that make up the RNN. Based on the 
aforementioned formula, all RNN layers may share the same set of input parameters. In the context of the hidden layer's 
memory architecture, the state of the network Si is typically visualized as the memory unit. Each time around, a nonlinear 
function's input is updated based on the preceding step's output. So, it follows that RNNs need less parameter learning than 
CNNs do. Machine translation and voice recognition are only two examples of how the Recurrent Neural Network (RNN) 
has been put to use in the field of Natural Language Processing (NLP). In materials research, it has been suggested that a 
Recurrent Neural Network (RNN) be used to simulate a similar reward system in order to create new materials with 
desirable characteristics. 

Nonetheless, model bias and model variances are examples of mistakes that could emerge during training. Generally 
speaking, model bias may be traced back to incorrect assumptions made by the algorithm, whereas model variance can be 
traced back to the model's sensitivity to subtle changes in the training data. Errors may also occur owing to computational 
limitations or a lack of data, in addition to the aforementioned causes. It's also important to remember that overfitting 
might occur sometimes. This issue develops when the hypothesis becomes extremely strict in an effort to preserve 
consistency, which may lead to poor results for the model when predicting data that differs from the training set. 
Inadequate modelling sample selection, such as a lack of samples, the use of improper sample selection procedures, or 
mislabeled samples, may lead to overfitting since it fails to accurately reflect the established classification criteria. 
Overfitting may also happen if there is a lot of interference in the model, leading the computer to mistake some noise for a 
feature.  

An inappropriate model hypothesis or a failure to meet the circumstances under which the hypothesis is valid may also 
lead to overfitting. Finally, overfitting may also be caused by a large number of parameters or a complicated model. 
Unrestrained expansion may lead to growth that is restricted to either little event data or no event data at all in the context 
of the DT model. Therefore, although such expansion may show a perfect match to the training data, it may not be flexible 
enough to include additional datasets. In cases when the ANN's decision surface is not unique with respect to the sample 
data, the approach of back propagation could converge on a critically complex surface of decision. Overfitting may also 
cause the model to become sensitive to noise or irrelevant details. Thus, model validation is fundamental for minimizing 
errors and eliminating overfitting.  

 
Model evaluation 
A data-driven framework needs to perform admirably not just on the data it was trained on, but also on data it has never 
seen before. In most cases, the generalization errors of models may be evaluated computationally, and the results used to 
choose the best model. Testing data must be obtained before a model's discriminative skills may be assessed on a novel set 
of data. Therefore, the generalization error may be estimated using the testing error received from the test data. Given a 
single dataset D of m samples, it is feasible to split D into two subsets, S and T, for use in training and testing. Several 
types of testing and gauging methods may help with this. 

𝐷𝐷 = {(𝑥𝑥1,𝑦𝑦1), … … … . (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)}                                                                              (3) 

The dataset 𝐷𝐷 is divided into a test set T and a sample set S in the grasp-out approach, such that: 

𝐷𝐷 = 𝑆𝑆 ∩ 𝑇𝑇 𝑆𝑆𝑎𝑎𝑀𝑀 𝑆𝑆 ∪ 𝑇𝑇 = ∅                                                                                  (4) 
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Stratified sampling is a sampling technique that preserves categories and is frequently employed to uphold the 
uniformity of data distribution while minimizing the introduction of further discrepancies. Due to the absence of an 
optimal solution for determining the relative ratios of 𝑆𝑆 and 𝑇𝑇, it is common practice to allocate approximately 2/3 to 4/5 of 
the samples in 𝐷𝐷 to 𝑆𝑆, while the remaining samples are assigned to 𝑇𝑇. The approach of cross-validation involves the 
partitioning of the initial dataset 𝐷𝐷 into 𝑘𝑘 distinct and non-overlapping equal-sized subsets. Every subset 𝐷𝐷𝐴𝐴 is obtained 
through a process of "stratified sampling". 

𝐷𝐷 = 𝐷𝐷1 ∪ 𝐷𝐷2 ∪ … … . .∪ 𝐷𝐷𝑘𝑘 ,𝐷𝐷𝑖𝑖 ∩ 𝐷𝐷𝑗𝑗 = (𝐴𝐴 ≠ 𝑗𝑗)∅                                                          (5) 

 Subsequently, the amalgamated set comprising 𝑘𝑘 − 1 subsets is designed as a training set 𝑆𝑆, whereas the remainder is 
allocated for employment as the test set 𝑇𝑇. The method referred to as leave-one-out cross-validation (LOOCV) is 
unimpacted by the random set separation when 𝑘𝑘 is the same as the sample number 𝑚𝑚 in 𝐷𝐷. It should be noted that the 
aforementioned procedure is iterated for every subset of the data, resulting in a cumulative count of k experiments. Hence, 
the cross-validation technique could be time-consuming and may not be appropriate for datasets of significant size. 

LOOCV offers two key advantages over K-fold cross-validation. First, the model is trained using the vast majority of 
data in each iteration, producing results that are more consistent with the distribution of the original samples. Lack of 
chance throughout the experiment ensures that the method and results can be replicated. LOOCV shares the disadvantage 
of high computational cost with K-fold cross-validation. Implementing LOOCV while working with a large number of raw 
data samples might be difficult until mathematical evaluation are parallel to minimize the overall computation time. 

Models' precision and consistency may be evaluated with the use of validation strategies like the Bootstrap and the 
Repeating Learning Test (RLT) cross-validation. When validating a model, Randomized Lasso-Type (RLT) cross-
validation partitions the dataset in a different way than Leave-One-Out Cross-Validation (LOOCV). As a result, there is a 
dramatic reduction in the amount of computational complexity. The selection of the test set often relies on the real issue at 
hand, and determining the ideal quantity of data for model validation may be a difficult process. The generalization error 
of a model may be estimated with the use of the Bootstrap cross-validation methodology, which employs random sampling 
to generate estimates. Although the increased computing cost is a drawback, the success of this method minimizing the K-
fold cross-validation variance is significant. 

According to the bootstrapping sampling approach, the bootstrapping approach integrates constantly copying a sample 
from D into a novel D’ in a random manner until D’ has enough m samples. D’ represents the training set of data, while 
DD′ is the test dataset. Since the bootstrapping method keeps the same number of training samples as the original dataset, 
it is an appropriate strategy when the dataset size is restricted and splitting the training/testing data is difficult. It is possible 
that estimate bias will be introduced if the bootstrapping method is used since it alters the distribution of the original 
dataset. 

The efficiency of an algorithm is measured by analyzing how well it performs in various scenarios. The model’s 
predictive performance is measured by contrasting the experimental data with the projected results. The criteria for 
assessment are conditional on the specifics of the topic under consideration. Classification accuracy (CA) is a useful metric 
for evaluating classification models: 

𝑆𝑆
𝑁𝑁

= 𝐶𝐶𝐴𝐴                                                                                                    (6) 

where S represents the samples number, which were successfully categorized and N represents the overall sample 
number. Root mean square error (RMSE), correlation coefficient (R2), and Mean absolute percent error (MAPE), are all 
utilized to evaluate the models employed to mitigate regression issues, as indicated in expressions (3)-(5). 

1
𝑛𝑛
∑ 𝑦𝑦′𝑖𝑖−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
= 𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸𝑛𝑛

𝑖𝑖=𝑗𝑗                                                                                                     (7) 

�1
𝑛𝑛
∑ �𝑦𝑦′𝑖𝑖 − 𝑦𝑦𝑖𝑖�

2 =      𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑛𝑛
𝑖𝑖=𝑗𝑗                                                                                           (8) 

�∑ (𝑦𝑦1−𝑦𝑦)(𝑦𝑦′𝑖𝑖−𝑦𝑦
′)2𝑛𝑛

𝑖𝑖−1 �
∑ (𝑦𝑦1−𝑦𝑦′)2𝑛𝑛
𝑖𝑖−1 .∑ (𝑦𝑦1−𝑦𝑦)2𝑛𝑛

𝑖𝑖−1
= 𝑅𝑅2                                                                                          (9) 

 
where y’i and yi signify a corresponding forecasted value and the original value, correspondingly, and y’ and y 

represent the mean of the forecasted value and the original value, correspondingly.  
In addition, there exist various alternative metrics that can be utilized to evaluate the efficacy of classification models. 

These include but are not limited to receiver operating characteristic (ROC) curve, precision, recall, hinge loss, Cohen's 
kappa, confusion matrix, Jaccard similarity coefficient, logistic regression loss, Hamming distance, coverage error, ranking 
loss, and label ranking average precision. The utilization of indices of detailed coefficient and variance of determination is 
common in the context of regression analysis. The mutual information (MI), silhouette coefficient, and Rand index, are 
frequently utilized metrics for evaluating the efficacy of models in clustering tasks. 
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III. APPLICATION OF ML IN MATERIALS SCIENCE 
Material discovery 
Around thirty years ago, John Maddox, the then-editor of the scientific journal Nature, articulated that a persistent 
challenge in the field of physical science is the inability to predict the structural configuration of fundamental crystalline 
solids solely based on their chemical composition. Despite the modern progressions, the act of forecasting the crystal 
model solely according to its composition remains a vital and perhaps the most significant pursuit in the domain of 
materials science. The rationale behind this assertion is that the development of any rational materials design necessitates a 
comprehensive comprehension of the crystal model. 

However, the process of predicting molecular or crystal models is highly challenging, as the potential configurations of 
atoms in 3D spaces are vast and complex, resulting in a highly intricate energy landscape. Recent advancements in energy 
assessment approaches have diversified the "classical" scope of crystal model forecasting approaches to encompass a wide 
spectrum of solid forms and molecules. Additionally, more intricate algorithms for structure generation and selection, such 
as simulated annealing, metadynamics, random sampling, evolutionary algorithms, and minima hopping, have been 
devised in recent times. Nevertheless, these methodologies continue to be computationally intensive as they necessitate a 
significant amount of force and energy evaluations. The pursuit of novel and enhanced high-performance materials 
requires a thorough investigation of the composition and structure domain. The potential of ML computations in 
addressing the challenge at hand is highly promising, owing to the integration of vast quantities of data. 

There exist diverse methodologies that can be utilized by ML algorithms to tackle this concern. A plausible initial 
tactic entails expediting the energy assessment procedure by replacing a first-principle approach with ML algorithms that 
demonstrate considerably higher velocity, as explicated in the "ML Force Fields" segment. The prevalent approach 
employed in the domain of inorganic physics in solid-state is commonly denoted as an element prediction. Rather than 
performing an exhaustive analysis of the structural space for a singular composition, scholars choose to designate a 
prototype framework and then investigate the composition space to ascertain stable materials. Thermodynamic stability is 
the fundamental concept in the context being discussed.  

The phrase "non-decomposable compounds" pertains to chemical compounds that exhibit no tendency to decompose 
into separate phases or compounds, even over an indeterminate duration. Metastable compounds, such as diamond, can be 
synthesized and have become more accessible as a result of advancements in the field of chemistry. Typically, it is more 
practical to generate and control compounds that exhibit thermodynamic stability. The conventional approach to assessing 
thermodynamic stability involves evaluating the energetic detachment from the convex hull. In particular instances, ML 
approaches will evaluate the chances of a particular elements’ prevalence in a particular phase without intermediary steps. 

 
Component prediction 
The predictive capability of formation energy in determining the stability of a recently synthesized compound is evidently 
constrained. Preferably, it is ideal to employ the detachment to the thermal stability convex hull. Contrary to energy 
development, the convex hull detachment considers the alterations of free energy, which happens across potential 
decomposition pathways. The statement mentioned above is erroneous since our understanding of the convex hull is 
inherently inadequate. Fortunately, the progress in comprehending the convex hull by discovering more resilient materials 
has led to a reduced importance of this matter over time. It is a widely accepted convention to conduct initial energy 
computations based on fundamental principles while assuming zero temperature and pressure conditions. This approach 
disregards the impact of kinetic factors on stability. 

The methodology of Kernel Ridge Regression (KRR) was employed by Rezaei, Amirshahi, and Mahbadi [15] to 
ascertain the formation energies of an extensive assemblage of elpasolites, comprising a total of two million crystals. The 
crystals were comprised of elements from the main group, with bismuth being among them, and exhibited a stoichiometry 
of ABC2D6. It was reported that a sample set with 104 composition showing errors of 0.1 eV/atom. Additionally, a total of 
90 novel stoichiometries were forecasted to be found in convex hull. The dataset produced by Telschow et al. [16] consists 
of DFT computations of 250,000 stoichiometry ABC3 cubic perovskites, integrating all components to bismuth, whereas 
eliminating lanthanides, and rare gases. After conducting experiments with different ML techniques, it was found that the 
amalgamation of adaptive boosting and random trees exhibited the most noteworthy level of achievement, resulting in a 
0.12 eV/atom mean error. Fig 3 illustrates that the chemical composition has a significant impact on the prediction error. 
Furthermore, a methodology that focuses on active learning through pure exploitation was suggested, as explicated in the 
section entitled "Adaptive Design Process and Active Learning". 

Dos Santos, Pich, Back, Smiderle, Dumas, and Moura [17] aim to explore two ternary prototypes composition spaces, 
i.e. tP10-FeMo2B2, and tI10-CeAl2Ga2, which possess a stoichiometry of AB2C2, in order to identify stable compounds. 
The research methodology utilized in this study is founded on the approach outlined in the specified reference. The convex 
hull yielded the discovery of 1893 novel compounds, leading to a computation time reduction of roughly 75%. The tP10 
and tI10 compounds were found to have false negative rates of 0% and 9%, respectively, according to the report. 

The investigation carried out by Baumgartner, Kropf, Haider, Veeranki, Hayn, and Schreier [18] employed 
conventional Random Forests (RFs) for the purpose of predicting formation energies. This was achieved by utilizing 
features derived from atomic properties and Voronoi tessellations. The performance of descriptors was found to be 
superior to Coulomb matrices and partial radial distribution functions, based on a training set comprising of approximately 
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30,000 materials. Structural data integration retrieved from Voronoi tessellation did not result in any noticeable 
improvement in the results obtained for the cohort of 30,000 unique materials used for training. The aforementioned 
observation is based on the underlying assumption that the dataset in question comprises a finite set of materials that 
possess the same composition, but display discernible structural attributes. The assertion was substantiated by modifying 
the training dataset to encompass a notable 400,000 material sourced from open quantum materials set. The findings 
suggest that the model which integrated structural information demonstrated superior performance compared to the 
composition-only model, exhibiting a 37% reduction in error. 

 

 
Fig 3. Mean average error, expressed in meV/atom, resulting from the implementation of adaptive boosting in 

conjunction with extremely random trees 
 
The metric was computed for all perovskites that contain the element under investigation and subsequently averaged. 

The numerical values enclosed in parentheses represent the precise average error for each individual element. The study 
conducted by Xia, Zhang, Yuan, Liu, and Ma [19] employed a uniform methodology to investigate quaternary Heusler 
compounds, leading to the discovery of 53 previously unknown stable frameworks. The model was subjected to training 
using diverse datasets, which encompassed the comprehensive open quantum material database and exclusively the 
quaternary Heusler compounds. The research findings indicate that the integration of supplementary prototypes in the 
training dataset resulted in an improvement of the prognostic efficacy of Heusler compounds. It is fundamental to consider 
that the utilization of kernel-based methodologies such as Support Vector Machines (SVMs), and Kernel Ridge Regression 
(KRR) may not be feasible for carrying out research studies that entail voluminous datasets, as a result of their critical 
computational scaling. The study conducted by Korhonen, Tuppurainen, Asikainen, Laatikainen, and Peräkylä [20] 
involved the utilization of classification methodologies and diverse regression to scrutinize a dataset consisting of 2150 
A1, xA′xB1, yB′yO3 perovskites.  

The aforementioned materials exhibit potential utility as cathodic components within solid oxide fuel cells operating at 
elevated temperatures. A total of 238 elemental characteristics were employed as attributes in the various approaches used. 
The study's findings suggest that trees that were randomly assigned in an exceptional manner demonstrated the highest 
efficacy as classifiers, with 0.93 accuracy and 0.88 F1 score. Regarding regression, it was observed that both Kernel Ridge 
Regression (KRR) and Extremely Randomized Trees (ERT) exhibited remarkable performance, as their respective mean 
average errors were found to be less than 17 meV/atom. The constrained nature of the elemental composition space poses a 
difficulty in the comparison of the errors presented in this study with those of other works. 

The topic of stability in oxide-perovskite systems is addressed by Dey, Das Sharma, and Mukhopadhyay [21]. The 
formation energy of non-mixed perovskites was predicted by Van Gompel et al. [22] with a 30 meV/atom mean average 
error. The achievement was attained by utilizing neural networks that solely depended on the fundamental concepts of 
electronegativity and ionic radii. However, the dataset at hand was limited to a modest quantity of 240 compounds, which 
were utilized for the purposes of training, cross-validation, and testing. Shen et al.' [23] study demonstrated that mixed 
perovskites, which possess two distinct components of B-site and A-site, display comparable error rates. The investigation 
yielded 9 meV/atom and 26 meV/atom mean average errors for garnets that were not mixed and those that were mixed, 
respectively, and had a composition of C3A2D3O12. The reduction of the previously mentioned error to 12 meV/atom 
was achieved by Beglari, Goudarzi, Shahsavani, Arab Chamjangali, and Mozafari [24] through the utilization of structural 
descriptors and the imposition of constraints on the mixing process exclusively within the C-site. After conducting a 
comparative analysis with previous research works, it is apparent that the errors observed in this study are considerably 
minimal. The disparity in the total number of compounds examined between [25] and [26] is noteworthy, given that the 
former focuses on a mere 600 compounds, while the latter delves into roughly 250,000 compounds. This discrepancy 
provides a straightforward and unambiguous justification. To clarify, the subject matter exhibits a significant degree of 
intricacy, exceeding a scale of 100. 
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Convolutional Neural Networks (CNNs) have been developed by Cheng, Wang, Yang, and Nakano [27] with the aim 
of identifying crystallographic phases. The convolutional neural networks (CNNs) utilized in this specific context are 
identified as crystal graph convolutional neural networks (CGCNNs). The concept of Materials Graph Networks was 
initially presented by Gurnani, Kuenneth, Toland, and Ramprasad [28], while the notion of Message Passing Neural 
Networks was put forth by Li and Cheng [29]. The section titled "Basic Principles of ML - Features" elaborates on the 
ability of ML models to predict formation energies. Consequently, they can be employed to expedite component 
prediction. Thus far, all methods for predicting constituents in this domain have relied on training data derived from first-
principle calculations. The scarcity of data regarding finite temperature conditions can be ascribed to the significant 
computational expenses associated with it. The available data primarily pertains to conditions of zero temperature and 
pressure, thereby disregarding the influence of kinetic factors on stability. In addition, it is important to mention that 
metastable compounds, such as diamond, demonstrate a level of stability that is suitable for practical utilization and are 
essential to various applications. However, there is a potential for these compounds to be disregarded. The current issue is 
being tackled by utilizing empirical training data through the implementation of the following methodologies. 

The origin of the primary framework for forecasting structure, which is based on empirical evidence, can be traced 
back to the 1920s. In the decade prior to the current one, the Goldschmidt tolerance factor was a pertinent demonstration of 
the stability exhibited by perovskites. In contemporary times, novel techniques such as SISSO, gradient tree boosting, and 
RFs have exhibited superior performance compared to traditional models, leading to a significant enhancement in the 
prognostic precision for perovskite stability. This improvement has been observed to increase from 74% to over 90%. The 
Zhuang et al. [30] formulated a hypothesis regarding the potential existence of a substance in a perovskite configuration, 
either cubic or non-cubic in nature. The result of the prediction produced an average cross-validation error rate of 94%. 
The application of empirical evidence to forecast stability yields a greater degree of precision and reliability. The rationale 
behind this is that despite the fact that the convex hull theoretical detachment is a useful metric, it is not completely 
reliable in determining stability. In order to identify the vast majority of perovskites available in an inorganic crystal model 
database, it is essential to augment the convex hull detachment by approximately 150 meV/atom, as depicted in Fig 4. 

 

 
Fig 4. A histogram depicting the distribution of convex hull detachment for perovskites that are encompassed within 

the inorganic crystal model database 
 
The study conducted involved the performance of 79 calculations using density functional theory, employing the 

Perdew-Burke-Ernzerhof estimate. The magnitude of the bin width is 25 meV per atom. The AB2C Heusler compounds 
have been found to possess a significant number of experimentally verified structures. The study conducted by Gao, Lin, 
and Hu [31] involved the utilization of Random Forests (RFs) and empirical data to develop a prognostic model that 
determines the probability of producing a comprehensive Heusler compound with a particular composition. The dataset 
utilized in this model comprised of all compounds exhibiting AB2C stoichiometry, sourced from the alloy phase diagram 
dataset and the Pearson's crystal dataset. The stability of various novel full-Heusler phases was predicted and 
experimentally verified by Gu, Ji, Guo, Chen, Yang, and Tan [32] through the utilization of elemental characteristics as 
fundamental attributes. 

IV. CONCLUSION AND FUTURE RESEARCH 
This study has conducted an examination of the ML paradigms utilized in the realm of materials science. The research has 
clarified the essential phases of data processing, including sample construction, data modeling, and model assessment. The 
present manuscript offers a comprehensive survey of the application of ML methodologies in the domain of materials 
science. Materials science is a field that utilizes both empirical and computational methods to investigate the structural and 
functional properties of materials. Subject matter experts (SMEs) with significant experience, spanning multiple years or 
even decades, employ their knowledge to create innovative materials that demonstrate the intended structure-property 
relationships. Over the past decade, the domain of ML has undergone substantial growth and has more recently penetrated 
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various scientific fields such as physics, healthcare, material science, and astronomy. The application of ML has garnered 
considerable attention in the domains of real estate forecasting, material identification, and investigation of quantum 
chemistry. This can be attributed to the strong predictive capabilities and cost-effectiveness exhibited in computational 
operations. However, the utilization of ML methodologies in the domain of materials science is confronted with various 
obstacles. The field encounters several challenges such as inadequate availability of high-quality data pertaining to 
materials, challenges in accurately representing material properties, and comparatively lower prediction accuracy when 
compared to DFT calculations. This paper proposes supplementary approaches that could augment the application of ML 
methodologies in the domain of materials science. 

The expeditious development of material databases holds significant significance for the prospective progress of ML. 
The efficacy of ML is intrinsically linked to the quality and quantity of data, as it is a methodology that relies on data. The 
body of experimental records and scientific literature comprises a significant amount of factual information that can be 
analyzed using ML methods. This information includes, but is not limited to, reaction conditions, synthetic formulations, 
and molecular properties. The implementation of text mining methodologies enables the efficient acquisition of valuable 
data that are distributed across diverse articles, journals, and magazines. This procedure has the potential to substantially 
improve the prevailing material repositories and expedite the establishment of customized databases. Secondly, it is crucial 
to establish innovative principles for ML. It is anticipated that the utilization of deep learning methodologies and the 
consequent analogue/manual feature engineering replacement will result in an improved ability to represent raw data in a 
more efficient manner in the times to come. However, the fundamental principles governing the selection of features and 
their significance by Deep Neural Networks (DNNs) remain incompletely understood by scholars. The results obtained 
from deep learning are considered inconclusive and lack a universally applicable theoretical framework. The pursuit of 
understanding the internal mechanisms of the "black box" not only improves the practicality of ML in the materials 
science domain but also accelerates the documentation of natural principles, which are yet to be comprehended by humans. 
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