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Abstract – Due to the global COVID-19 epidemic in the preceding two years, there has been a significant debate among different 
academics about how learners may be lectured through the web while maintaining a higher degree of cognitive efficiency. Students 
may have problems concentrating on their work because of the absence of teacher-student connection, but there are benefits to online 
learning that are not offered in conventional classrooms. The Adaptive and Intelligent Web-based Educational Systems (AIWES) is a 
platform that incorporates the design of students' online courses. RLATES is an AIWES that uses reinforcement learning to build 
instructional tactics. This research intends the aggregation and evaluation of the present research, model classification, and design 
techniques for integrated functional academic frameworks as a precondition to undertaking research in this subject, with the purpose of 
acting as an academic standard in the related fields to aid them obtain accessibility to fundamental materials conveniently and quickly.  
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I. INTRODUCTION 
Machine Learning (ML) is the study of how computers learn, specifically how to use information gathered from past 
experiences to do better on future iterations of the same tasks. It is considered Artificial Intelligence (AI) because it mimics 
human thoughts. In order to make proper decisions and or predictions without being trained, ML algorithms structure a 
framework using a sample of data known as training data. ML algorithms are employed in different fields, including where 
it is impossible or difficult to design analogous algorithms to accomplish different required tasks, e.g., pattern recognition, 
agribusiness, voice recognition, email filtering, and medical analytics. However, not all ML is quantitative training, but a 
segment of it is connected to computer science, which is concerned with generating predictions using computers. 
Mathematical optimizations provide a platform for ML with novel tools, theoretical models, and prospective application 
areas. The exploratory data evaluation using unsupervised learning is the major emphasis and foundation of data mining, 
an associated domain of research. Some types of ML make use of neural networks and big data in a way that is reminiscent 
to how the brain of humans operates. ML is sometimes denoted as predictive analytics when used to commercial concerns. 

Algorithms that learn from experience assume that successful prior approaches, algorithms, and conclusions will 
continue to provide positive results going forward. For example, "X% of families contain geographically different species 
with color variations, hence there is a Y% probability that unknown black swans exist." Machine learning software may 
carry out operations that were not included in their original code. Automated learning is the process of teaching a computer 
to do a job by seeing human examples of success. Programmable algorithms may instruct a computer on how to carry out a 
series of operations that will ultimately lead to a solution, eliminating the necessity for any form of training on the side of 
machines when dealing with straightforward problems. A human being may have trouble coming up with the required 
algorithms for rapidly increasing complex tasks. In addition, it may be more effective to aid computers in constructing its 
own algorithm compared to having human developer categorically define every step.  

The objective of ML is to use a variety of techniques to train computers to complete tasks for which there is presently 
no adequate solutions [1]. Whenever there are increasingly multiple answers to select from, the best approach to follow is 
to designate the best one as "valid." Computers may use this data as training data to effectively define its approach of 
arriving at the best decisions. The MNISST database that integrates handwritten figures has been increasingly employed in 
training systems for different tasks for digital feature recognition. In the early 1960s, the Raytheon Company created 
Cybertron, an exploratory "learning machine" with perforated tape memory that could analyze sonar data, 
electrocardiogram (ECG), and voice modulation via the use of primitive reinforcement learning. It was fitted with a "goof" 
key to force it to reevaluate bad judgments and was "taught" by a human controller to spot patterns via repetition. Nilsson's 
Learning Machines, which focuses on using computers to classify data, is illustrative of the field of machine learning as it 
developed in the 1960s. In 1973, Zhao, Zhao, Xue, Yang, and Liao [2] highlighted how interest in pattern recognition had 
persisted into the next decade. It was reported in 1981 that neural networks might be trained to effectively identify 40 
different symbols (4 specialized symbols, 10 numbers, and 26 letters) from a centralized computer system via the use of 
several training methodologies. 

http://washington.edu/
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An even for formalized definition of the algorithm explored in ML was provided by Bulstra and Machine Learning 
Consortium [3], and is often cited: " When the program's performance on tasks in the class 𝑇𝑇, as assessed by the 
performance measure 𝑃𝑃, improves as a function of experience E, we say that the program has learned from experience E 
with respect to the class T and the performance measure 𝑃𝑃." As opposed to describing machine learning in cognitive terms, 
this characterization of different tasks with which it is concerned provides a comprehensibly operational definition. In 
Hossain and Miah [4]’ work, the cognitive capability was discussed by asking: "Can machines think?" as "Can machines 
accomplish what humans (as thinking creatures) can achieve?" This discussion is in line with Crosby [5] recommendations 
about the level of cognition in machines. The first objective of modernized machine learning is to classify data based on 
pre-existing frameworks; second, is to forecast futuristic occurrences using these frameworks. Hypothetical data-
categorization framework may be training to effectively differentiate between benign and malignant agents through 
computer vision of these agents and approaches to supervised learning.   

Machine learning technology has numerous potential applications in many different areas, including business, biology, 
medicine and education. For many years now, big data has been utilized in the evaluation of data on different scholars at 
distinct stages in their learning process to develop learning policies, and machine learning technology has been extensively 
utilized in education, for example, to evaluate the accomplishments and performance of students, and to execute the 
appropriate steps to increase student engagement and assist them graduate. Researchers have begun to employ machine 
learning to create teaching techniques as the domains of ML technology continues to advance. This has led to the creation 
of a number of educational systems, including the ASES (Adaptive Smart Educational Systems [6]), AIES (Adaptive and 
Intelligent Educational Systems [7]), and Adaptive Learning System [8]. 

Adaptive and Intelligent Web-based Educational Systems (AIWES) frequently employ a reinforcement training 
technique called Reinforcement Learning (RL) in Adaptive and Intelligent Educational System (RLATES) to develop 
pedagogical strategies. A customized optimum learning approach may be developed via the interplay between the learner 
and the system, which is made possible by using reinforcement learning to the construction of teaching techniques. 
According to the available literature, the following issues often hinder RLATES' performance: (i) The conventional Q-
learning method is used exclusively in the existing literature to train a network and plan suitable pedagogical approaches, 
however this algorithm has a flaw in that it exaggerates the value of an action in specific circumstances. For scenarios that 
have not been frequently taught, the model in an adaptive instructional system may not be enough. Because of the over-
practice issue, however, more study time is not commensurate with increased practice. (iv) The next step is to provide 
further detail on these three restrictions. 

First, a conventional Q-learning algorithm cannot escape the overestimation issue indicated, which is discussed by Qu, 
Yu, Houston, Conte, Nandi, and Bowman [9]. However, many research still favor using a conventional Q-learning 
algorithm whenever employing reinforcement learning to adaptive education system, and in various researches, authors in 
[10] fail to discuss the overestimation issue. More advanced than the predictive Q-learning approach, double DQN and the 
double Q-learning algorithms have been created for the area of reinforcement learning, and by using these algorithms to 
the adaptive learning framework, possible exaggeration concerns may be avoided to some degree. Second, Q-learning is 
utilized in an adaptive instructional program by Blomeyer Jr [11], however there is an implementation issue with the 
simulation model in case users are not trained effectively, i.e. if much iteration is not seen for the approach to train, then 
the systems might not work optimally. Their work must be considered despite the systemic flaws. According to their 
findings, the system for additional steps or states to be proactively incorporated instantaneously, which means that 
educators and learners alike may contribute material to systems, which they deem significant or needed, and the 
framework can be instantaneously upgraded to reflect these additions. This implies the system is very flexible and simple 
to use. In regards to the final point, there are writers that implement novel algorithms in courseware design, such as 
Partially Observable Markov Decision Process (POMDP) [12] and Proximal Policy Optimization (PPO) [13]. 

Over-practice was a major issue in Untila's research [14] since he found that having students complete more tasks did 
not necessarily lead to increased time spent on task. However, the neural networks employed in this article diminished the 
level of complexity of the state space and actions, which in turn required fewer samples for the method to converge. 
Although Zhang's study did not suffer from the over-practice issue, the paper's reinforcement learning algorithm's reward 
levels might be tweaked to improve its performance. The most important takeaway from this research is that the best 
answer may still be delivered by the POMDP (Partially Observable Markov Decision Process) even if the student only 
provides partial knowledge. In addition, Apriyanto et al.'s [15] article proposes a system that may collect the information 
locally while responding accurately to questions from student users.  

The objective of this article is to help researchers in related disciplines improve their work by providing a high-level 
summary regarding how reinforcement learning might be employed in Adaptive and Intelligent Web-based Educational 
Systems (AIWES) and by contrasting and summarizing relevant efforts thus far. The rest of the article is organized as 
follows: Section II focuses on an overview of RL reviewing aspects of Markov Decision Process, Q-learning, Double 
Deep Q-Network and Deep Q-Network, and Comparisons with Bayesian Network. Section III focuses on RLATES with 
discussion of the current research, applied RL in RLATES and Model-free and Model-oriented RL. Section IV 
summarizes the paper drawing concluding remarks.  
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II. REINFORCEMENT LEARNING  
According to Xu, Han, Jiao, and Gao [16], Reinforcement Learning (RL) focuses on how organisms might acquire the 
knowledge to understand the relationships between inputs, behaviors, and the occurrence of either rewards (positive 
outcomes) or punishments (negative outcomes). Both positive (rewards) and negative (punishments) are examples of 
reinforcers, and reinforcement refers to the process through which the reinforcer forms and strengthens these connections 
(negative reinforcers). The learner's behaviors are influenced by these connections in a number of ways, including the 
formation of automatic and vegetative reactions based on the expectation of rewards and punishments. Because of its 
obvious adaptive importance, RL has been found in diverse taxa as far removed from chordates as nematodes, arthropods, 
mollusks, and, of course, chordates. Contemporary neuro-computational theories of RL may be located at the crossroads 
where animal learning and AI research converged in the 20th century. Behavioral frameworks and psychological notions 
are part of the legacy of the first thread, whereas their formalization in mathematics is the legacy of the second. 

Cardon, Ma, and Fleischmann [17] argue that both the algorithmic and the psychological perspectives hold that the 
learner (whether it be an animal or an artificial) is motivated by some kind of reward (goal-directness). Compared to other 
forms of learning, including procedural or observational learning, RL is distinguished by this aspect. Two characteristics 
become clear from this perspective: RL is selectional (the agent must attempt to pick among multiple other possibilities) 
and associative (Each option selected must correspond to a specific circumstance). Early studies of animal learning 
referred to RL as conditioning. Classical conditioning and instrumental conditioning are the two primary types of 
conditioning experimental paradigms. 

Curiel and Poling [18] posit that associating a reinforcer with a stimulus or behavior is a key component of the 
minimum conditioning processes. When using classical conditioning, the reinforcer is given to the learner regardless of 
their behavior, and the observed response is modeled after automatic, pre-programmed reactions. When Pavlov's dog heard 
the bell that signaled the arrival of food, he instinctively started salivating. In instrumental conditioning, the recipient's 
behavior determines whether or not they get the reinforcer. De Aguilar-Nascimento’s [19] early experimental studies of 
this process revealed this trait: a caged animal would learn to undertake certain behaviors (string pulling, lever pushing) in 
order to free itself from confinement or get food. Several requirements have been demonstrated to be essential when 
examining the causative factors of conditioning, including temporal contiguity (an action or a stimulus must be temporally 
near to the result for an association to be made), contingency (the likelihood of an outcome should be greater after the 
action or the stimulus, i.e. the action or the stimulation ought to be forecasters of the occurrence), and prediction error (In 
cases when the learner was unable to foresee a certain consequence from a given action or stimulus, an association is made 
between the two). 

This latter concept was initially presented by Young [20]. They were particularly curious in a phenomenon in 
conditioning known as the "blocking effect." An animal is initially presented with a first conditioned stimulus (here, a bell 
ring) that anticipates the delivery of a reinforcer (food pellets) (i.e., food). Once the animal has learned to associate the bell 
with the food, they will be exposed to a different stimulus (in this case, a light) alongside the meal. Therefore, the bell and 
the light are both indicators of forthcoming nourishment. As though "blocked" by the initial connection, the animal does 
not learn to associate the light with the food when tested. It was hypothesized in the Rescorla-Wagner theory by Kimmel 
and Lachnit [21] that conditioning takes place not only when two events happen at the same time, but even when the 
coincidence between them is not obvious from prior experience. Because the bell perfectly predicts the arrival of food in 
the previous case, no fresh link is formed between the light and food. Specifically, they use a "prediction error," which 
they describe as the discrepancy between the expected and actual reinforcer, as their primary learning signal. The accuracy 
of a forecast of a reinforcer (reward or punishment) is measured by its error, and the Rescorla-Wagner theory is an error 
reduction strategy. 

The case of reinforcement theory provides a useful psychological paradigm for understanding RL from an AI 
perspective, which is a branch of machine learning seeking computational alternatives to a range of problems. The agent is 
imagined to move from one state of the environment to another, making decisions about what to do and what not to do in 
order to maximize a quantitative reward1. Taking this into account, an RL agent needs to be able to do two primary things: 
(i) predict what reward will be received from a given state (reward prediction); and (ii) choose the best possible action to 
take in order to maximize that reward (choice). Temporal difference (TD) learning is a key component of many prominent 
current RL models. Learning in this model is based on a reward forecast error term, similar to the learning rule employed 
by Rescorla-Wagner theory. The TD learning algorithm uses this information to construct correct reward forecasts from 
delayed rewards. Q-learning is an extended version of TD learning that focuses on learning the expected reward for each 
action individually. In this case, the best option is the one that has the highest expected reward. Q-learning relies on a TD 
error as well. 

In this way, RL algorithms allow the experimenter to extrapolate important computational parameters of these 
simulations and generate quantitative predictions on the expected evolution of neurological and behavioral data given the 
model's assumptions. These cognitive constructs are called "hidden variables" to distinguish them from the experimental 
observables (decisions, response times) from which they are produced. We'll examine the monkey brain's mapping of these 
computationally hidden variables in the following part, with a special emphasis on prediction mistakes. Agent, 
surroundings, action, incentive, and state are the five main components of reinforcement learning. There are two key 
components in a reinforcement learning algorithm: the agent and the surroundings. The agent can observe the state of the 
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surroundings and respond accordingly depending on the reward it has got from the environment after interacting with it to 
create an action. A clearer depiction of this procedure is shown in Fig 1. 

 
Fig 1. A representation framework of RL case 

 
Model-Free and Model-oriented Reinforcement Learning  
There are two major forms of Reinforcemnt Learning (RL) algorithms: Model-free and Model-oriented. Model-oriented 
RL algorithms works where the agent must interact with the virtual world, learn from it, and then use that model to inform 
its future actions. In model-free RL algorithms, agents do not construct a model of its setting but instead formulates and 
learns different actions directly by interacting with the environment. The statistics in Fig. 2 were collected by scouring 
publications available in many popular databases published in the previous five years and indicate the model-oriented RL 
algorithms are not as popular in the area of education as model-free reinforcement learning algorithms (2018–2022). Some 
examples of modelbased reinforcement learning algorithms include the Imagination-Augmented Agents (I2As), the World 
Models and the Model-oriented Value Expansion (MBEV). Model-free RL algorithms, such as Soft Actor-Critic (SAC) 
[22], Proximal Policy Optimization (PPO) [23], Categorical Distributional RL (CDRL) [24], Deep Deterministic Policy 
Gradient (DDPG) [25], Deep Q-Network (DQN) [26], and Q-learning, are used in a wider variety of applications than 
model-oriented RL methods. 
 

 
 

Fig 2. Publications comparing model-oriented and model-free RL algorithms 
 

Markov Decision Process 
A Markov Decision Process (MDP) [27] is the foundation of reinforcement learning; each MDP tuple includes a limited 
number of actions and variable transfer possibilities. Below are examples of the reward and transitional functions that 
make up the MDP paradigm. 

 
𝑆𝑆 × 𝐴𝐴 × 𝑇𝑇: 𝑆𝑆 → (0, … 1)⋯𝑆𝑆:𝑅𝑅 × 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅           (1) 
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Over time, several variations of the Markov decision process have emerged; three of these variants are summarized in 
Table 1. 

Table 1. Distinct MDP versions 
MDP versions Type of system Features  
Fully Observabe MDPs (FMDPs) Discrete Fully observable 
Semi MDPs (SMDPs) Continuos  Generally observable 
Partially Observable MDPs (POMDPs) Discrete  Incompletely observable 

 
Q-Learning  
As a model-free grounds approach that has been extensively used in various reinforcement learning studies, Q-learning 
serves as the gold standard for Optimization algorithms [28]. The expression below is the principle of Q-learning, which is 
generated from the Bellman framework. 

 
∑ 𝜋𝜋 (𝑎𝑎, 𝑠𝑠)∑  𝑝𝑝 (𝑠𝑠, 𝑎𝑎) ≠  𝑠𝑠 [𝛾𝛾 𝑉𝑉𝜋𝜋  (𝑠𝑠′) + 𝑊𝑊𝑠𝑠→𝑠𝑠′≠𝑎𝑎] = 𝑉𝑉𝜋𝜋𝑠𝑠𝑎𝑎             (2) 

 
∑  𝑝𝑝 (𝑎𝑎, 𝑠𝑠 ≠ 𝑠𝑠′) �𝛾𝛾 ∑  (𝑎𝑎′, 𝑠𝑠′) 𝑄𝑄𝜋𝜋(𝑠𝑠′,𝑎𝑎′)𝑠𝑠′ + & 𝑊𝑊𝑠𝑠→𝑠𝑠′≠𝑎𝑎� = 𝑄𝑄𝜋𝜋  (𝑠𝑠, 𝑎𝑎)𝑠𝑠′           (3) 

 
𝑉𝑉𝜋𝜋  alludes to the SVF (State Value Fuction) while Q (s, a) alludes to the AVF (Action Value Function) within the 

Bellman equation. Since going from state s to state 𝑠𝑠 +  1 is unpredictable, we need to add the expectation E to the 
equation above, where r stands for the reward. Using a Q-table organized as 𝑠𝑠, 𝑎𝑎, whereby 𝑠𝑠 signifies different sates, 
whereas 𝑎𝑎 signifies different actions/activities, Q-learning algorithm chooses the appropriate policy. The preceding phase 
may be calculated from the existing state of affairs using the provided Q-table. After making a decision on what to do next, 
the agent carries out that decision and, upon successfully completing the action, agents obtain their rewards from the 
environment. Q-table in its setting is typically upgraded after each action, and it is modified using the given equations. 

 
𝑄𝑄 (𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡) ← 𝑄𝑄 ( 𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡) + 𝛼𝛼 �γ max

𝑎𝑎𝑎𝑎
… .𝑄𝑄 (𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) + 𝑟𝑟 − 𝑄𝑄 ( 𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡)�        (4) 

 
The variables in this equation are the reward (r), the action (a), the state (s), the rate of learning (α), and the discounting 

factor ( 𝛼𝛼 and 𝛾𝛾) both and operate on the same 0–1 scale. In 1993, however, Bradley, Pooley, and Kockelmann [29] 
proposed that, due to the possibility of random errors occurring uniformly within the action/activity values, bias could be 
evident in the pursuit for ideals amounting to sub-optimum solutions instead of the optimum one. In a research published 
in 2014, Tiwari, Kumaraswamidhas, and Garg [30] demonstrated that ambient noise might contribute to overestimation 
issues in traditional Q-learning algorithms, a topic that hadn't been addressed until then. It was claimed in Li, Meng, Gao, 
Zhang, and Chen's [31] research that Double Q-learning algorithm could be employed in addressing over-estimation issue; 
a similar technique, dubbed Double DQN, was subsequently published by Lee, Jung, and Chung [32]; the latter's approach 
is described in more depth below. 
 
Deep Q-Network and Double Deep Q-Network 
Since Deep Q-Networks (DQN) employ "Deep" "Convolutional Neural Networks" (CNN), the "Deep" in "Deep Q 
Networks" (DQNs) alludes to the employment of such networks. CNNs represent to a form of deep learning that takes 
cues from the human visual cortex in its attempt to interpret the visual data being collected by external sensors (the eyes). 
A human-defined algorithm is taught separately to comprehend the items within an image, the specific cases, and locations 
of every case, and this simplified dataset is therefore fed into agents as inputs to structure streamlined states for agents to 
effectively operate on. In the latter case, we also addressed the manner in which we provide RL agents the capability to 
autonomously normalize the states of raw image pixel so that is could derive insights from them. There, we also had a 
short discussion of CNN's (Convolutional Neural Networks) significance. 

CNNs are multi-layered networks of Convolutional Neurons, with each layer's Convolutional Neurons using a unique 
kernel (function) to incrementally cover the image. The convolutional layer could produce different convolution lesser 
maps as opposed to input pixel sizes of about N x N for every channel, but all of the resultant maps utilize the same 
weighting for the kernels if the input images incorporate three distinct channels of colors, each of which represent the N x 
N pixels. Convolutional Neural Network (CNN) is higher compared to Deep Neural Network (DNN) that is based on 
multi-layer perception for handling images since weights for kernels in the layers remain the same, requiring optimization 
of just a single vector to bring out the salient characteristics in an image. However, a CNN's output is a multi-dimensional 
tensor that is useless when used as input for a regression or classification (value estimation) system. As a result, a CNN's 
final convolutional layer is often linked to one or more flat layers (that are analogous to encrypted elements with DNN) 
before being input in a Soft-Max" activation map for categorization as Linear" activation system for regression. Class-
probabilities for all classes requiring classification are generated by the 'SoftMax' activation layer, and the optimal course 
of action is calculated by selecting the output class with a high category-probability (arg-max). 
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In case you missed it, the CNN networks are really included inside the DQN one. In the previous section, we focused 
on a specific DQN that was able to perform well across 49 Atari games simultaneously by employing an architectural 
feature that started with a CNN with multiple convolutional layers, continued with two whole layers, and concluded with 
an 18-class 'SoftMax' classification scheme. This list of 18 groups represents the many ways in which the game may react 
to player actions (One 8-way gamepad and single buttons for various games house Atari Controllers). Do-nothing, eight-
category signifying eight joystick directions (i.e. Move Diagonal Left Up, Move Straight Left, Move Diagonal Right 
Down, Move Straight Right, Move Diagonal Right Up, and Move Straight Up), Press-Button (without moving), and eight 
actions that correspond to pressing buttons create the 18 categories utilized with DeepMin. At each juncture when the 
agent must take some kind of action (which, as we will see, need not necessarily correspond to each and every one of the 
steps), the agent makes a selection among the available actions (it should be noted that one of these actions is Do-
Nothing).  

Varghese and Mahmoud [33] purposed to provide readers the tools they needed to build their own practical RL agent. 
We may need to tailor the CNN ecosystem and the design of the output units for a specific sector and use case, such as the 
ones we may implement for Atari, to keep the 60 FPS visual output rate stable. This implies that in (i) a single second, (ii) 
the game will produce and (iii) deliver 60 images. This signal might be used to inform the condition of our agent. One 
potential problem of training a Q-Learning-Network with raw image pixels and directly handling subsequent frameworks 
at a prompt frame rate is that training of Q-Learning-Network might potentially diverge or become caught in a hunting 
loop instead of converging. The DQN needed these three improvements to achieve downward convergence and practical 
application while dealing with high frame rate, correlated images, and high dimension data. 

Traditional Q-learning techniques have trouble handling increasingly complicated tasks because it is difficult for 
computer systems to maintain all the data needed to do the calculation, and because an excessively big Q-table renders Q-
values recovery substantially passive. By using states and actions as inputs to effectively construct essential Q-values, 
convolutional neural networks reduce the need for both storage space and processing time for the Q-table. In order to 
project value functions, DQN uses CNN. In DQN, the -greedy approach is utilized to decide what to do next. Each time a 
choice has to be made, a greedy approach like -greedy the one that would bring in the most money. The DQN's 
methodology is then outlined. To begin, the agent receives a state value from the surrounding environment and uses this 
value to determine all the states from which it may choose and the actions it can do. The environment delivers the selected 
action's reinforcement and the updated state value after a -greedy policy has been applied to choose the next action. DQN 
develops larger loops of these to efficiently attain and design an optimum policy, building on the selected loop that has 
been used so far. 

Consequently, DQN shares Q-inability learning's to avoid the overestimation issue; nevertheless, a novel method was 
presented in a 2016 publication that offers an early solution to the exaggeration problem. The fundamental cause of the 
overestimation issue is addressed in this article by the definition of a function originally named Double DQN, which 
prevents the overestimation from continually spreading from one condition to the next. After the maximal Q-value has 
been chosen, the same value is chosen in a second communication topology on the corresponding action values, and the 
chance of overstatement is much reduced when the Q-value is the largest value including both subsystems, but it could still 
appear on occasions. When compared to traditional Q-learning and traditional DQN, Double DQN significantly improves 
upon the overestimation issue. 

Using Double Q-learning, a Double DQN breaks out the maximum function in the target into adaptive control and 
action assessment to reduce overestimation. Although the greedy strategy is assessed in terms of the online network, its 
value is calculated in terms of the target network. The upgrade is similar for DQN, but it replaces the target 
𝑌𝑌𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷 with:  

 
𝑌𝑌𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾 �𝑆𝑆𝑡𝑡+1, argmax

𝑎𝑎
𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎; 𝜃𝜃𝑡𝑡); 𝜃𝜃 −𝑡𝑡�                 (5) 

 
In Double DQN, the weights of the network communication t are used instead of the values of the second network 

θt− to assess how well the current greedy strategy is working. This is an improvement over the initial conception of 
Double Q-Learning. 
 
Comparisons with Bayesian Network  
To express a collection of variables and their conditional dependencies, a Bayesian network (Bayes network, belief 
network, Bayes net, or decision network) uses a Directed Acyclic Graph (DAG) [34]. When there are several plausible 
explanations for a given occurrence, Bayesian networks may accurately forecast the chance that any given explanation was 
responsible. The probabilistic associations between illnesses and symptoms, for instance, may be represented by a 
Bayesian network. The network may be used to estimate the likelihood of different illnesses given a list of symptoms. In 
Bayesian networks, inference and learning may be performed via efficient algorithms. Dynamic Bayesian networks allude 
to the Bayesian network, which model variable patterns (such as protein patterns or voice signals). Influence images are 
Bayesian network generalizations, which could address and model decision challenges involving uncertainty.  
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Research has also looked at using other AI algorithms, such as the Bayesian Network, in intelligent educational 
systems, so it's not only reinforcement learning that's being used. Bayesian Network is a technique for finding the best 
answers, much as reinforcement learning is. This system design, if employed to smart training systems, is congruent with 
the ideology of learning from learners’ student and knowledge features and, on the basis of this, suggesting training 
approaches for the essential groups. However, Bayesian networks are an iterative procedure and stateless. Despite being 
iterative in nature, the results of one function call have no bearing on those of subsequent calls. In contrast, the 
optimization process for reinforcement learning is a stateful overall process, and every transition between states has an 
impact on the next one. This implies that the decision made in the previous phase has an impact on the transition towards 
the next state. In contrast to Bayesian Network, reinforcement learning requires a cumulative total of all rewards in order 
to find the optimal solution. 

 
III. ADAPTABILITY AND INTELLIGENCE OF EDUCATIONAL SYSTEMS  

Reinforcement Learning (RL) is studied by many different disciplines because to its adaptability. Some of these disciplines 
include: statistics, multi-agent networks, simulation-based algorithms, pattern recognition, systems engineering, operations 
research, and cognitive science. RL alludes to neuro-dynamic programming or approximation dynamic programming in 
the domain of operational research and operational control. Although the theory of optimal control has investigated many 
of the same issues that interest reinforcement learning, its focus has been on the existence and characterisation of optimum 
solutions and methods for their accurate calculation rather than on approximation or learning, in particular in the aspect of 
mathematical representation of the surroundings. Reinforcement learning could be used to provide light on the emergence 
of equilibrium in the presence of restricted rationality in economics and game theory. 

An MDP, or Markov decision process, is used to represent elementary RL: (i) a collection of states (S) describing the 
status of the environment and the agent; (ii) an inventory (A) of the agent's activities; The objective of RL is to teach the 
agent to adopt a strategy that maximizes the "reward function" or some other reinforcement signal supplied by the user, 
which is accumulated from the immediate rewards. This seems to be a process that also occurs in the mind of animals. To 
provide just one example, genetic brains are designed to perceive signals such as hunger or pain as negative 
reinforcements, and signals such as food intake and pleasure as positive enforcements. Animals tend to learn how to 
maximize their chances of receiving these rewards under certain conditions. It is possible that animals may learn with the 
help of reinforcement after all. Problems are said to be fully observable if and therefore only if they can be expressed as a 
Markov Decision Process (MDP) on the premise that the agent has perfect knowledge of the current configuration of the 
surroundings. An agent is said to have partial observability if it can only see a subset of different states, or in case the 
visualized states are full of noise; in this case, the issues have to be defined formally as POMDP. Constraining the options 
of agents is considered an option in both cases. For instance, the condition of account balances could be limited to be 
positive; in case the present value of the states is 3 and the state transitions try to decrease the overall value by 4, the 
transitions will not be allowed.  

The ideology of “regret” arises whenever the performance of an agent is compared to that of optimally-acting agents. 
The agents should be consider the long-term impacts of actions (i.e. maximizing future revenues) even if doing so will 
result in a negative immediate reward in order to operate near optimally. In this way, challenges involving a short-term vs. 
long-term reward trade-offs are especially well-suited to reinforcement learning. In addition to its use in robot control, 
elevator scheduling, telephony, checkers, backgammon, and Go, it has been used effectively to a wide variety of issues 
(AlphaGo). The application of sample to boost performance and the application of function estimation to deal with 
massive environments are two major elements, which render RL effective. Because of these two factors, reinforcement 
learning may be used in the following settings with significant resources: When (i) an environmental model is available 
but no analytical solution exists, or (ii) a simulation model of the ecosystem is given (the aspect of simulation-oriented 
optimization), simulation-based optimization is the method of choice. (iii) Interacting with the world around you is the 
only way to learn more about it. We may classify the first two as planning issues (given the existence of a model) and the 
third as a true learning challenge. Reinforcement learning, however, transforms both planning issues into machine learning 
challenges. 

Recent years have seen a rise in interest in distance education. Distance learning is crucial when both students and 
instructors are unable to be physically present in the same classroom. Basic needs for distant learning may be addressed by 
learning using web-based materials (text, video, photos, audio, etc.) or online lessons supplied by instructors. One-to-many 
teacher-student interactions eventually fail to fulfill one role, adaptive instructions, since students cannot correctly discover 
the solutions to issues they confront via online resources. Due to high expenses on one-on-one educational programs, it is 
not effective to employ this approach to all students’ groups despite the fact that these classes are more productive and 
more fulfilling than small group courses. In light of this reality, the Adaptive Intelligence Educational System was created 
to provide each student access to their virtual instructor and enable them to benefit from one-on-one training methodology 
at a minimum cost, provided they have access to a computer. 

AIWESs use a number of machine learning algorithms to understand student characteristics in order to re-sequence all 
course content modules depending on those individuals' unique profiles. Incorporating learning algorithm, which allows 
for more natural student engagement and a more robust learning paradigm, is an approach advocated by AIWESs to 
enhance an overall system performance. Reinforcement Learning Automated Tutoring System (RLATES) is a system that 
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incorporates RL into AIWESs. The knowledge framework and the educational approach framework are also parts of 
RLATES. The knowledge model is where choices like which chapters of the textbook to cover and how those lessons will 
be presented (through video, audio, text, or images) are made. In the pedagogical strategy framework, the approach for 
delivering the content is designed. However, RLATES cannot be taught in its entirety from the ground up at this time. In 
the early stages, training data is used to educate the model how to best approach each student's unique traits. When 
constructing the system, it is fundamental to subdivide the whole experimental procedure into two phases: training and 
teaching. Real-world pedagogical use is contingent upon the model's having been trained effectively. 
 
Current Research  
An overview of where things are in terms of study into intelligent pedagogical systems is provided here. The retrieval also 
indicates that only a small percentage of the research focused AIWESs really employed reinforcement learning methods. 
See Fig. 3 for specifics. 

Fig 3. The current publications for AIWES 

 
It is seen from Fig. 3 that the classic Q-learning method is still frequently employed in the area of AIWES. Given that 

the Q-learning technique is a model- and policy-free RL technique, it makes perfect sense to apply it to these kinds of 
setups. However, Q-learning's flaws slow down processing and lengthen the time it takes for the system to respond when 
the Q-table is too big. On the other hand, many authors have settled on the Q-learning technique because it belongs to the 
classic RL algorithms and is easier to implement in practice than model-free alternatives. All five of the aforementioned 
articles use Q-learning methods, but each has its own set of criteria for success. 

Most research utilizes the amount of time spent, the number of scholars, and the number of steps to assess the 
effectiveness of their models. One of the most interesting pieces is Publication 1, in which the writers create their own 
assessment measure they call PFM. If the PFM is less than 60, the article's writers consider the model's performance to be 
excellent, and if it is more than 60, the performance is considered to be bad. Additionally, the results of a PFM evaluation 
might provide some insight into the challenge level of the course material: low scores suggest the material is more difficult 
than expected. Even though it precludes a side-by-side comparison of the model's efficiency and productivity across 
different publications, this assessment measure is used by the authors to evaluate the three tactics inside the article, and it 
makes the assessment findings more intuitive and clear to read and comprehend. 

The process of learning educational policies according to the requirements of learners in an AIWES is the best match 
for RL. Employing RL in AIWES from the start is impractical since previous efforts have shown that a considerable deal 
of experience is required for the mode to learn to train appropriately. Theoretical researches have shown that the amount of 
experience needed to acquire an appropriate educational strategy may be reduced by seeding AIWES with an earlier value 
function learnt with simulated learners. We show empirically that the AIWES can get extremely accurate starting 
educational policy from a value function trained with simulated learners. More than seventy first-year computer science 
students participated in the assessment, proving that they were able to acquire a helpful and efficient overview of the 
course material. 

There has been a recent uptick in investment towards the study of distance learning. Programs in pedagogical models 
have often consisted of unmodifiable, static websites. But beginning in the 1990s, scientists have been introducing 

1. Quantum 
Learning (Q-
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3. Q-learning – Number of 
students/Time consumption 
(Jiménez, Angulo, Street, and 
Mancilla-David [38])

5. Negative-Chance Markov Decision 
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(Shi et al. [40])

6. Proximal Policy Optimization (PPO) –
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(Wu, W. Bi, and Liu [41])
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{39])

7. Q-learning – Number of trials/state/action 
(Liu, Ye, Escribano-Macias, Feng, Candela, 
and Angeloudis [42])
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flexibility into their designs. Utilizing educational knowledge representation oriented to RL allows a pedagogical system to 
effectively customize training for each individual learner. The system is designed to sequence its material optimally since 
no fixed and preset instructional rules need to be created for individual students. However, a lot of training data is required 
for RL algorithms to converge on a solid strategy for action. Furthermore, RL systems respond nearly arbitrarily according 
to a value function started randomly in the first trials of the learning if the system has not been preinitialized to a 
pedagogical method. Since disinterested or bored students may be detrimental to an educational system, it is crucial that 
lessons be presented in a rational manner at all times. 

Initiating the value function with one that was trained for performing a comparable problem using a similar model has 
been shown to speed up learning in a research. Learning the action policy may be sped up by using previously recorded 
experience tuples to initialize the value function. By instantiating the system with an educational approach, even if it does 
not perfectly correspond with the present students' demands, we have shown experimentally with simulated students in 
prior work that the complexity of the learning stage may be decreased. 
 
Applied RL in RLATES  
It is clear from Section II's overview that reinforcement learning consists of five distinct parts. To successfully implement 
RL in RLATES, it is crucial to verify that the system's parts match up with the five main parts of RL algorithms. In this 
article, we will discuss how reinforcement learning may be used with RLATES to improve the quality of the results. 
RLATES' components are first described in terms of their counterparts in the algorithm for reinforcement learning in 
Table 2 below: 

Table 2. Overview of RLATES Components 
RLATES' components 

Agent It is the learner, or "agent," who acts as the focus of RLATES. This, the learner is analogous to an agent 
in the RL algorithm since the training model is utilize by the learners through interactions with the model 
for following operations. 

Environment The environment, which may be thought of as the sum total of the system's accumulated knowledge, is 
responsible for assessing students' mastery of course material and gathering demographic data. 

Action Each knowledge module in RLATES corresponds to an action, since actions are the decisions an agent 
must make at each stage. 

State The state in reinforcement learning algorithms is the condition that the surroundings returns to after an 
action is considered by the agent. As a result, in RLATES, the state represents the student's level of 
mastery of the material. In this case, a vector is utilized to keep track of information, and each state's 
value falls between zero and one. If the pupil has achieved mastery, the state value is 1. The state value is 
0 in case the student has not understood the materials. 

Reward Each choice in a reinforcement learning algorithm results in a distinct reward, and in RLATES, every 
knowledge module has its own reward that varies with its importance. And in RLATES, the goal is to 
maximize this payoff over time. 

 
System 1 then details how the RLATES dataset was fed into the RL algorithm. The procedure below results from 

combining RLATES's parts with those of a reinforcement learning algorithm: 
 

Algorithm 1 Apply a recurrent neural network for RLATES 
Set 𝑄𝑄(𝑠𝑠, 𝑎𝑎) for 𝑎𝑎 ∈ 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈  𝑆𝑆 
Inquire into the state of the students' understanding 
Repeat after each episode, 
Select a learning module a and provide it to the learner via 𝜀𝜀 −greedy policy  
Collect the incentive r; if the RLATES objective is met, 𝑟𝑟 would be non-negative, and otherwise, r will be zero. 
Inquire into the state of the students' understanding 
Update 𝑄𝑄 (𝑠𝑠, 𝑎𝑎): 

𝑄𝑄 ( 𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡) ← 𝑄𝑄 ( 𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡) + 𝛼𝛼 �γ max 
𝑎𝑎 𝑡𝑡

𝑄𝑄(𝑎𝑎𝑡𝑡 + 𝑠𝑠𝑡𝑡+1) +  𝑟𝑟 − 𝑄𝑄 (𝑎𝑎𝑡𝑡 + 𝑠𝑠𝑡𝑡)� 

Until s exceeds the set condition 
 

IV. CONCLUSIONS  
This article provides a short overview of the ideas and algorithms behind intelligent pedagogical systems, as well as a 
literature review on the creation of such systems that emphasizes adaptability. This article provides a concise overview of 
current studies that may be used as a resource for scholars in related fields. The findings of this literature review are as 
follows. (i) Due to the qualities of adaptive education system, Reinforcement Learning (RL) is suited for application within 
the development of systems, and could be significant in providing enough training techniques for individuals with the 
same qualities. The more advanced reinforcement learning algorithms have seldom been applied to the subject of smart 



   Advances in Intelligent Systems and Technologies 
 

64 
 

educational systems (ii) despite the fact that many researchers have pondered how to implement RL into Adaptive and 
Intelligent Web-based Educational Systems (AIWES). Most studies use the same set of assessment measures for gauging 
the effectiveness of the system under study, allowing researchers to easily draw parallels across the various analyses. 

There are limits to being able to compare experimental outcomes between researches; however some studies have 
established their own assessment criteria to better analyze the experimental data for future improvement. Although online 
education is becoming more and more of a need for today's students, little study has been done on the topic of applying RL 
to AIWES. As with most trends in history, online learning would not ever be able to totally replace traditional classroom 
instruction. However, advances in both computing power and educational theory mean that the latter will become more 
obsolete as the former becomes the norm. This paper's limitations include the fact that the given and analyzed 
reinforcement learning and AIWES are based only on literature elements and have not been confirmed and assessed in real 
tests. Future study will include integrating the combining a Bayesian Network with RL techniques for improved system's 
operational effectiveness and the algorithm's computational complexity.  
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