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Abstract - This article reviews the recent advances in the field of monitoring tool condition using acoustic and pulse 

signals. Specifically, the research focuses on the development and application of signal processing techniques to extract 

valuable information from acoustic and pulse signals generated by cutting tools during machining operations. To this 

end, the literature is reviewed with emphasis on the signal acquisition and analysis techniques used in the field. 

Additionally, the article presents a comprehensive overview of the existing methods and techniques used to monitor tool 

conditions, including signal analysis techniques, feature extraction techniques, and classification techniques. 

Furthermore, the article discusses the challenges associated with acoustic and pulse-based TCM, including signal noise 

and impurities, signal acquisition, feature extraction, and classification. The review concludes with a discussion of the 

possible future directions in the field. The use of acoustic and pulse signals to monitor the condition of cutting tools has 

become increasingly popular in recent years. In order to extract useful information from the signals generated by cutting 

tools, sophisticated signal processing techniques are required. In this article, a comprehensive review of the existing 

methods and techniques used to monitor tool conditions is presented. Various signal acquisition and analysis techniques 

are discussed, as well as feature extraction and classification methods. Additionally, the article delves into the challenges 

associated with acoustic and pulse. 

 

Keywords - Acoustic and Pulse Signals, TCM, Signal Processing, Signal Analysis, Feature Extraction, Classification, 

Signal Acquisition, Signal Noise and Impurities. 

 

I. INTRODUCTION 

The Internet of Things (IoT) has revolutionized the way we interact with the physical world and has enabled the 

development of novel applications that combine physical and digital processes. One of the most promising applications 

of IoT is the monitoring of tool condition [1]. TCM is a process of collecting and analyzing data from sensor readings to 

detect and diagnose any wear or damage in the cutting tools used in industrial machining. This paper reviews the 

available literature on TCM using acoustic and pulse signals obtained from the IoT [2]. The various techniques used to 

detect tool wear, their advantages and limitations are discussed. The paper also provides an overview of the current 

trends in IoT-based TCM. The use of cutting tools in industrial machining is an essential part of many manufacturing 

processes. The performance of these tools is directly related to the quality of the machined parts and the overall 

productivity of the process. However, the cutting tools wear out over time, resulting in reduced productivity and poor 

quality of the parts. In order to maintain the performance of the tools, regular maintenance and inspection of the tools is 

required [3]. This process is known as TCM. TCM is a process of collecting and analyzing data from sensor readings to 

detect and diagnose any wear or damage in the cutting tools used in industrial machining. It involves the use of sensors to 

measure the parameters that indicate tool wear, such as pulse, temperature, acoustic emission, etc [4]. The data collected 

from the sensors is then analyzed using various algorithms to detect any tool wear or damage. The development of IoT 

has provided new opportunities for the implementation of TCM in industrial processes. IoT-based TCM involves the use 

of IoT-enabled sensors to monitor and detect the condition of the tools in real-time. The data collected from the sensors is 

analyzed using cloud-based analytics to provide insights into the condition of the tools [5]. This helps in minimizing the 

downtime due to tool wear and maximizing the efficiency of the manufacturing processes. The majority of the existing 

research on TCM using IoT has focused on the use of acoustic and pulse signals. Acoustic and pulse signals are 

generated when the cutting tool interacts with the workpiece during machining. These signals can be used to detect the 

onset of tool wear [6]. Various techniques, such as pattern recognition, wavelet transform, and artificial neural networks, 

have been used to analyze the acoustic and pulse signals in order to detect tool wear. The use of IoT in TCM also enables 

the use of other techniques, such as machine learning, to analyze the data collected from the sensors. Machine learning 

algorithms, such as support vector machines and deep neural networks, can be used to identify the patterns in the data 
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and detect the onset of tool wear [7]. The current trends in IoT-based TCM include the use of wearable sensors and the 

integration of artificial intelligence (AI) for online monitoring of the tools. Wearable sensors can be used to directly 

measure the parameters that indicate tool wear and send the data to the cloud for analysis. AI-based algorithms can be 

used to analyze the data in real-time and detect the onset of tool wear. In conclusion, the use of IoT in TCM is a 

promising approach to improve the efficiency of the manufacturing processes. The various techniques used to detect tool 

wear, their advantages and limitations are discussed in this paper. The current trends in IoT-based TCM are also 

discussed [8]. The types of signal processing are exhibited in Table 1 

 

Table 1. Signal Processing Techniques 

Technique Description 

Acoustic Signal 

Analysis 

Analysis of sound waves generated by cutting tools during machining operations 

Pulse Signal Analysis Analysis of pulse signals generated by cutting tools during machining operations 

Signal Noise Reduction Techniques to reduce noise and impurities in the acquired acoustic and pulse signals 

Signal Preprocessing Preprocessing techniques such as filtering, normalization, and resampling of the 

signals 

Time-Domain Analysis Analysis of the signals in the time domain, including statistical analysis and 

waveform analysis 

Frequency-Domain 

Analysis 

Analysis of the signals in the frequency domain, including Fourier transform and 

spectral analysis 

Time-Frequency 

Analysis 

Techniques to analyze the signals in both time and frequency domains, such as 

wavelet transform and spectrogram 

 

II. SIGNAL ACQUISITION AND ANALYSIS TECHNIQUES 

The development of sophisticated monitoring and control systems has enabled manufacturers to identify and control the 

condition of their machinery in order to improve production and maintain a safe working environment [9]. By monitoring 

the condition of tools and machinery, operators can detect potential problems before they cause costly damage or 

downtime. Acoustic and pulse signals are widely used in the industry as one of the most effective ways to monitor tool 

condition [10]. As the Internet of Things (IoT) emerges, there are opportunities to implement these methods more 

effectively and efficiently. This paper will review the use of acoustic and pulse signals in the context of IoT and discuss 

the latest advancements in signal acquisition and analysis techniques. Background Acoustic and pulse signals are widely 

used in industry to monitor the condition of tools and machinery. Acoustic signals are generated by the friction of two 

surfaces and can be used to detect changes in the wear of cutting tools, such as drills, taps and reamers. Pulse signals are 

generated by the motion of rotating or reciprocating parts and can be used to detect changes in the bearing condition of 

machinery [11]. Both acoustic and pulse signals contain information about the condition of the tool or machinery, and 

can be used to detect potential problems before they cause costly damage or downtime. Signal Acquisition The 

acquisition of acoustic and pulse signals is an important step in monitoring tool condition with IoT. The quality of the 

signal acquired will affect the accuracy of the condition monitoring system, so it is important to use the appropriate 

signal acquisition equipment [12-15]. This equipment typically includes microphones, accelerometers or strain gauges 

which are connected to a data acquisition system. The signal is then digitised and stored on a computer or other device 

for further analysis. The signal acquisition system must be designed to capture the relevant frequency range for the 

application, for example the range of frequencies associated with cutting tools or the range of frequencies associated with 

bearings [16]. The signal should also be recorded with sufficient accuracy and resolution for the analysis to be accurate 

and meaningful. This can be achieved by using an appropriate sampling rate and signal-to-noise ratio. Signal Analysis 

Once the signal has been acquired, it can be analysed to identify changes in tool condition. Several techniques can be 

used for this purpose, including spectral analysis, time-frequency analysis, statistical analysis and artificial intelligence 

(AI) [17]. Spectral analysis is used to identify the frequency components in a signal and can be used to identify changes 

in cutting tool wear or bearing condition. Time-frequency analysis can be used to analyse the dynamics of the signal over 

time, allowing for the detection of gradual changes in tool condition [18]. Statistical analysis can be used to identify 

patterns in the signal and to detect changes in the characteristics of the signal. AI techniques such as neural networks, 

fuzzy logic and genetic algorithms can be used to identify changes in the signal which may not be detectable by other 

methods. Acoustic and pulse signals are widely used in industry to monitor the condition of tools and machinery [19]. 

The different types of data extraction techniques are exhibited in Table 2. 

 

Table 2. Data Extraction Techniques 

Technique Description 
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Statistical Features Extraction of statistical measures from the signals, such as mean, variance, skewness, 

and kurtosis 

Time-Domain Features Extraction of features based on time-domain characteristics, such as peak amplitude 

and duration 

Frequency-Domain 

Features 

Extraction of features based on frequency-domain characteristics, such as spectral 

centroid and bandwidth 

Wavelet Transform Transformation of the signals using wavelet basis functions to extract time-frequency 

information 

Spectral Analysis Extraction of features from the frequency spectrum, such as spectral peaks and 

harmonics 

Energy Features Extraction of features based on signal energy, including total energy and energy 

distribution 

 

The development of IoT has enabled more effective and efficient acquisition and analysis of these signals. This paper 

has reviewed the use of acoustic and pulse signals in the context of IoT and discussed the latest advancements in signal 

acquisition and analysis techniques. These techniques can be used to detect changes in tool condition before they cause 

costly damage or downtime [20]. 

 

III. FEATURE EXTRACTION TECHNIQUES 

In the past few decades, the industrial world has seen an immense transformation in terms of the level of automation and 

the way in which machines are monitored and managed [21]. In this context, the internet of things (IoT) has emerged as a 

revolutionary technology that has enabled the connection of various physical objects to the internet, allowing them to be 

monitored and controlled remotely. This has resulted in improved efficiency, safety, and cost savings for industrial and 

manufacturing processes. One of the key components of IoT is the ability to monitor and predict the condition of 

machines and tools using acoustic and pulse signals. This article reviews the existing literature on acoustic and pulse 

signal-based TCM using IoT [22]. Background TCM (TCM) is a method of monitoring the performance and condition of 

tools and machines in a manufacturing or production environment. This can be done using a variety of methods, 

including manual visual inspection, temperature and pressure measurements, or pulse and acoustic signal analysis. The 

use of pulse and acoustic signals for TCM is particularly beneficial because it allows for the detection of subtle changes 

in the machine or tool condition that may not be visible with manual inspection techniques. This is especially useful in 

the case of rotating machines, such as motors, turbines, and pumps, which generate pulses that can be used to detect 

changes in the machine’s condition [23]. Similarly, acoustic signals can be used to detect changes in the tool condition, 

as well as potential problems such as tool wear, misalignment, and breakage. Using the IoT, it is possible to collect, 

process, and analyze acoustic and pulse signals in order to detect changes in the condition of tools and machines. This 

has become increasingly important as the complexity of manufacturing processes has increased and the need for accurate 

and timely monitoring of machine conditions has become critical. The use of acoustic and pulse signals for TCM is also 

beneficial because it allows for the detection of subtle changes in the machine or tool condition that may not be visible 

with manual inspection techniques [24]. Feature Extraction Techniques Feature extraction is a key step in the process of 

acoustic and pulse signal-based TCM using IoT. This involves extracting important characteristics of the signals that can 

be used to detect changes in the tool condition. These features can be broadly categorized into two types: time-domain 

features and frequency-domain features. Time-domain features are based on the characteristics of the signal over time, 

such as the shape of the signal, the amplitude, and the duration of the signal [25]. These features can be used to detect 

changes in the machine or tool condition, such as changes in the alignment, wear, or breakage of the tool. Frequency-

domain features are based on the characteristics of the signal in the frequency domain, such as the power spectrum and 

the spectral density of the signal. These features can be used to detect changes in the pulse or acoustic characteristics of 

the tool, such as changes in the resonant frequency or the harmonics of the signal. In addition to these time-domain and 

frequency-domain features, other types of features can also be used for TCM. These include wavelet-based features, 

which are based on the wavelet transformation of the signal, and time-frequency-based features, which are based on the 

analysis of both the time and frequency characteristics of the signal. These features can be used to detect changes in the 

pulse or acoustic characteristics of the tool. This article has reviewed the existing literature on acoustic and pulse signal-

based TCM using IoT. In particular, the article has discussed the various feature extraction techniques that can be used 

for TCM, including time-domain features, frequency-domain features, wavelet-based features, and time-frequency-based 

features. These features can be used to detect changes in the pulse or acoustic characteristics of the tool, as well as 

changes in the alignment, wear, or breakage of the tool. The use of acoustic and pulse signals for TCM is beneficial 

because it allows for the detection of subtle changes in the machine or tool condition that may not be visible with manual 

inspection techniques. The use of IoT for TCM is therefore becoming increasingly important as the complexity of 

manufacturing processes increases and the need for accurate and timely monitoring of machine conditions becomes more 

critical [26]. 
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IV. CLASSIFICATION TECHNIQUES 

Classification techniques are a powerful tool in the field of machine learning that can be used to accurately identify 

objects in a given dataset. Classification techniques are used to group data into distinct categories based on certain 

characteristics, enabling machines to recognize patterns and make predictions. In the context of monitoring tools 

condition with acoustic and pulse signals using IoT, classification techniques can be used to identify objects based on 

their acoustic and pulse signals. Classification techniques can be divided into two main categories: supervised learning 

and unsupervised learning. Supervised learning involves training the model on labeled data in order to develop the 

algorithm. This type of learning is used when the desired output is known in advance, and the purpose is to generate an 

algorithm that can accurately predict the output. Unsupervised learning, on the other hand, does not require labeled data 

and is used when the desired output is not known in advance. This type of learning is used to identify patterns in the data 

without the need for prior knowledge. In the context of monitoring tools condition with acoustic and pulse signals using 

IoT, supervised learning techniques can be used to accurately detect the presence of certain features in the acoustic and 

pulse signals. For example, supervised learning techniques can be used to identify the presence of a specific tool in the 

signal by training the model on labeled data of known tools. Unsupervised learning techniques can then be used to 

identify the condition of the tool based on the signal, without prior knowledge of the tool. This can be used to detect 

anomalies in the signal, such as a decrease in the tool's performance, or to detect a change in the tool's condition. This 

can be used to identify potential issues with the tool before they become a major problem. Overall, classification 

techniques are important tools in the field of machine learning that can be used to accurately identify objects in a given 

dataset. In the context of monitoring tools condition with acoustic and pulse signals using IoT, classification techniques 

can be used to identify the presence of certain features in the signal, detect anomalies, and identify changes in the tool's 

condition.  Another type of classification technique that can be used in the context of monitoring tools condition with 

acoustic and pulse signals using IoT is deep learning. Deep learning is a subset of machine learning that uses artificial 

neural networks to learn from large datasets. Deep learning can be used to detect subtle changes in the acoustic and pulse 

signals that may be indicative of a change in the tool's condition. The types of Machine learning used for prediction of 

machine behaviour is exhibited in Table 3. 

 

Table 3. Types of Machine Learning Techniques for Machine Behaviour Prediction 

Technique Description 

Supervised Learning Classification algorithms trained on labeled data to classify the tool condition, such as 

SVM and KNN 

Unsupervised Learning Clustering algorithms to group the signals based on similarity, such as k-means and 

DBSCAN 

Deep Learning Neural network models for automatic feature learning and tool condition classification 

Ensemble Methods Combination of multiple classification models to improve performance, such as random 

forests and boosting 

Hybrid Approaches Integration of multiple techniques, such as combining supervised and unsupervised 

learning 

Online Learning Techniques that adapt the classification model over time as new data is acquired 

 

By leveraging the power of classification techniques, it is possible to accurately monitor the condition of tools in real 

time, enabling efficient maintenance and preventing costly downtime. The literature on tool condition monitoring are 

summarized in Table 4 as follows. 

 

Table 4. Literature Summary on Tool Condition Monitoring Using IOT 

Reference Techniques Used Findings 

Denkena et al., 

2021 

Bio-inspired 

manufacturing, 

gentelligent processes 

Explores the use of bio-inspired manufacturing systems for condition 

monitoring and anomaly detection, combining vibration sensors and 

IoT architecture to enhance manufacturing processes. 

Aruquipa and 

Diaz, 2022 

IoT architecture, 

vibration sensors 

Presents an IoT architecture based on controlling a bio-inspired 

manufacturing system using vibration sensors for anomaly detection. 

The system aims to enhance manufacturing processes by identifying 

deviations from normal operating conditions. 

Cooper et al., 

2020 

Acoustic signals, 

convolutional neural 

network (CNN) 

Utilizes a CNN-based approach to monitor tool condition in vertical 

milling operations using acoustic signals. The study demonstrates 

the effectiveness of the proposed method in detecting tool wear and 

identifying tool breakage. 
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Cheng et al., 

2019 

Abrasive belt grinding, 

deep convolutional 

neural network 

(DCNN) 

Proposes a DCNN-based in-process tool condition monitoring 

technique for abrasive belt grinding. The method enables real-time 

monitoring and classification of tool conditions, assisting in timely 

tool change decisions and improving the grinding process. 

Huang et al., 

2021 

Milling, vibration 

signals, short-time 

Fourier transform 

(STFT), deep 

convolutional neural 

network 

Introduces a tool wear monitoring method for milling operations 

using vibration signals. The proposed approach combines STFT and 

deep convolutional neural network to accurately detect and predict 

tool wear, facilitating proactive tool replacement and optimization of 

machining processes. 

Huang et al., 

2019 

Multisensory signals 

fusion, reshaped time 

series convolutional 

neural network (ResTS-

CNN) 

Presents a tool wear prediction method that fuses multisensory raw 

signals using ResTS-CNN in manufacturing processes. The fusion of 

signals from various sensors enhances the accuracy of tool wear 

prediction, enabling timely tool replacement and reducing 

production downtime. 

Cao et al., 2019 

Translation-invariant 

wavelet frames, 

convolutional neural 

network (CNN) 

Proposes an intelligent tool wear state identification approach using 

translation-invariant wavelet frames and CNN. The method 

effectively classifies tool wear states based on acquired sensor data, 

aiding in the decision-making process for tool replacement and 

maintenance. 

Wu et al., 2018 

Cloud-based parallel 

machine learning, tool 

wear prediction 

Introduces a cloud-based parallel machine learning approach for tool 

wear prediction. By leveraging the power of cloud computing, the 

method facilitates real-time monitoring and prediction of tool wear, 

enabling proactive maintenance and reducing production 

interruptions. 

Li et al., 2022 

Audio sensors, 

ensemble deep learning 

model 

Proposes an ensemble deep learning model for cutting tool wear 

monitoring using audio sensors. The model effectively analyzes 

audio signals captured during machining processes, enabling 

accurate detection and prediction of tool wear. 

Balachandar and 

Jegadeeshwaran, 

2021 

Vibration signals, 

Random Forest 

algorithm 

Investigates friction stir welding tool condition monitoring using 

vibration signals and a Random Forest algorithm. The approach 

demonstrates the effectiveness of machine learning techniques in 

accurately identifying tool conditions, contributing to improved tool 

maintenance and process control. 

Lutz et al., 2020 

Image segmentation 

algorithms, 

benchmarking 

Conducts a benchmark study on automated machine learning 

algorithms for tool condition monitoring using image segmentation 

techniques. The evaluation highlights the performance and suitability 

of various algorithms, aiding in the selection and implementation of 

image segmentation algorithms in the context of tool condition 

monitoring. 

Nazir and Shao, 

2021 

Sensor fusion, 

ultrasonic metal 

welding 

Presents an online tool condition monitoring approach for ultrasonic 

metal welding using sensor fusion and machine learning techniques. 

The method enables real-time monitoring of tool conditions, 

facilitating proactive maintenance and improving welding quality. 

Zhou et al., 2020 

Milling, two-layer 

angle kernel extreme 

learning machine 

(TAKELM), binary 

differential evolution 

Proposes a tool condition monitoring method for milling operations 

using a two-layer angle kernel extreme learning machine and binary 

differential evolution. The approach effectively detects and predicts 

tool wear based on vibration signals, enabling timely tool 

replacement and optimization of milling processes. 

Sossenheimer et 

al., 2019 

Condition-based energy 

monitoring, machine 

learning 

Presents a sensor-reduced machine learning approach for condition-

based energy monitoring in machine tools. The study aims to 

identify the energy consumption pattern associated with tool 

condition, contributing to energy-efficient manufacturing processes. 

Caggiano et al., 

2018 

Principal component 

analysis (PCA), 

artificial neural network 

(ANN) 

Applies PCA for dimensionality reduction of sensorial features and 

ANN machine learning in tool condition monitoring during CFRP 

drilling. The method effectively classifies tool conditions based on 

extracted features, enhancing drilling process control and tool 

maintenance. 

Patange and 

Jegadeeshwaran, 

Milling, tool condition 

classification, machine 

Provides a review of tool condition classification approaches in 

milling using machine learning techniques. The study examines 
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2021 learning various machine learning algorithms and their effectiveness in 

accurately classifying tool conditions, facilitating improved tool 

management and process control. 

Jin et al., 2022 

Edge trimming of 

carbon fiber reinforced 

polymer, machine 

learning with 

instantaneous 

parameters 

Investigates tool wear prediction in edge trimming of carbon fiber 

reinforced polymer using machine learning techniques. The study 

utilizes instantaneous parameters to develop a predictive model for 

tool wear, enabling proactive tool replacement and optimization of 

trimming processes. 

Zhu et al., 2023 
Super-resolution, 

machine vision 

Proposes an online tool wear monitoring method based on super-

resolution using machine vision techniques. The approach enhances 

the resolution of acquired images, enabling accurate detection and 

prediction of tool wear during manufacturing processes. 

 

V. CHALLENGES IN TCM 

TCM is a critical part of any successful manufacturing operation, as it enables the efficient and reliable operation of 

machines and tools. However, while it is important, it is also a complex process, and one that can bring with it a number 

of challenges. In this article, we will explore some of the common challenges associated with TCM, as well as some 

considerations for overcoming them. The first challenge associated with TCM is the detection of faults. This includes the 

detection of wear on cutting edges, as well as the detection of broken tools or other defects. For example, if a tool is 

broken or worn out, it is important to detect this quickly so that it can be replaced. However, this can be difficult to do, as 

it often requires manual inspection of the tools. Another challenge associated with TCM is the selection of appropriate 

sensors and systems for monitoring. This includes selecting the right type of sensor for the application, as well as the 

right type of system for monitoring. For example, a sensor may be used to measure the pulse of a tool and then a system 

is used to analyze the data and detect any abnormalities. The type of sensor and system chosen will depend on the 

application, as different tools and materials require different types of sensors and systems. A third challenge associated 

with TCM is the interpretation of the data. This involves analyzing and interpreting the data collected by the sensors and 

systems, and determining if there is a fault or an anomaly. This can be difficult to do, as the data can often be noisy and 

difficult to interpret. In addition, it may be difficult to determine the cause of any anomalies, as the data may not provide 

enough information to determine the root cause. Finally, TCM can be time-consuming and expensive. This is because it 

requires the ongoing use of sensors and systems, as well as the manual inspection of tools. This can be especially 

challenging for small and mid-sized operations, as they may not have the resources to invest in the necessary equipment 

and personnel. Fortunately, there are a number of ways to address these challenges. For example, when selecting sensors 

and systems for monitoring, it is important to consider the application and the environment in which the tool will be used. 

This will help to ensure that the right type of sensors and systems are used, as well as that they are robust enough to 

withstand the environment. In addition, there are a number of software solutions available that can help to automate the 

process of TCM. These solutions can help to reduce the amount of time and effort required for manual inspection, as well 

as to aid in the interpretation of data. Finally, it is important to consider the use of predictive maintenance solutions [30]. 

These solutions can help to identify potential problems before they occur, allowing for proactive maintenance and repair 

of tools. This can help to reduce the amount of time and effort required for TCM, as well as to reduce the risk of 

unexpected downtime. In conclusion, TCM can present a number of challenges, including the detection of faults, the 

selection of sensors and systems, the interpretation of data, and the time and cost associated with the process. However, 

by considering the application and environment, utilizing automation solutions, and implementing predictive 

maintenance solutions, these challenges can be addressed and overcome. 

Currently, there are various legislations and standards in place relating to tool condition monitoring to ensure 

workplace safety, quality control, and efficient manufacturing processes. One such standard is ISO 13399, which 

provides guidelines for the representation of cutting tool data and information exchange between manufacturers, 

suppliers, and users. This standard promotes interoperability and accurate tool condition monitoring across different 

systems and platforms. In terms of legislation, occupational health and safety regulations, such as those set by the 

Occupational Safety and Health Administration (OSHA) in the United States or the Health and Safety Executive (HSE) 

in the United Kingdom, require employers to implement measures for ensuring the safety of workers using tools and 

machinery. These regulations often include provisions for regular tool inspections, maintenance, and monitoring to 

prevent accidents and injuries. Additionally, there may be specific regulations or guidelines in certain industries, such as 

aerospace or automotive, that outline the requirements for tool condition monitoring to maintain quality standards and 

ensure reliable manufacturing processes. It is crucial for organizations to stay informed about these legislations and 

standards, incorporating them into their tool condition monitoring practices to promote a safe and productive working 

environment. 
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VI. SIGNAL NOISE AND IMPURITIES 

TCM is an important part of any manufacturing process as it is used to detect any potential problems or faults in the 

machinery used. The aim of TCM is to make sure that the tools are in good working condition and that any potential 

problems are addressed before they become critical. This can be done through various methods such as pulse analysis, 

ultrasonic inspections, and visual inspections. One of the main challenges with TCM is that the data collected can be 

prone to signal noise and impurities. Signal noise and impurities are disturbances that can be picked up by the sensor 

during the monitoring process. These can be caused by the environment, such as interference from other machinery, or 

they can be caused by the tools themselves, such as pulses from the tool cutting. This noise and impurities can distort the 

data that is collected, leading to incorrect or incomplete results. To ensure accurate monitoring results, it is important to 

minimize the effect of signal noise and impurities. This can be done in a variety of ways. First, the sensors used for the 

monitoring process should be of a high quality and should be designed to minimize the effect of external noise. 

Additionally, the environment should be monitored for any disturbances that could affect the results. This can be done 

through regular inspections and through the use of pulse dampening materials. Another way to minimize the effect of 

signal noise and impurity is through the use of data processing techniques. Data processing techniques can be used to 

filter out any disturbance that is picked up by the sensors. This can help to reduce the amount of noise that is present in 

the data and can help to ensure that the results are accurate and reliable. Finally, it is also important to ensure that the 

tools themselves are in good condition and are not contributing to the signal noise and impurity. This can be done 

through regular maintenance and inspections of the tools, as well as through the use of maintenance strategies such as 

pulse analysis. By minimizing the effect of signal noise and impurity, TCM can be more accurate and reliable. This can 

help to ensure that any potential problems with the tools are identified and addressed before they become critical. This 

can help to reduce downtime and ensure that the manufacturing process is running smoothly and efficiently. 

 

VII. SIGNAL ACQUISITION 

Signal acquisition in TCM is the process of collecting and analyzing data from an array of sources in order to assess a 

tool's performance and health. This data is used to identify signs of wear and tear, defects, or other problems that could 

lead to failure or breakdown of the tool. The process is essential for predictive maintenance, which helps reduce 

downtime and keep machines running in optimal condition. Signal acquisition in TCM involves the use of various types 

of sensors, such as pulse sensors, temperature sensors, and pressure sensors. These sensors are typically placed on or near 

the tool and connected to a data acquisition system. The data acquisition system then collects, stores, and processes the 

data from the sensors. It is important for the data acquisition system to accurately measure the signals from the sensors in 

order to ensure the accuracy of the data. Once the data is collected, it can be analyzed to identify any potential issues with 

the tool. There are a variety of methods used to analyze the data, such as signal processing, statistical analysis, and 

machine learning. These methods are used to identify patterns and trends in the data that may indicate a problem with the 

tool [35]. For example, a sudden increase in pulse levels or high temperatures may be indicative of a mechanical issue. 

The data can also be used to make predictions about future performance of the tool. By understanding the patterns in the 

data, predictive models can be created that can help predict when a tool is likely to fail or require maintenance. This 

helps prevent unexpected breakdowns and allows maintenance to be scheduled in advance. Finally, the data can also be 

used to improve the design of the tool. By understanding the signals that indicate problems with the tool, manufacturers 

can make design changes to improve its performance. This can help reduce tool failure and improve overall efficiency. 

Signal acquisition in TCM is a powerful tool that helps maintain the health and performance of tools. By collecting and 

analyzing data from a variety of sources, it is possible to identify problems with a tool before they become serious, 

predict future performance, and make design changes to improve efficiency. This helps reduce downtime and improve 

the overall efficiency of the machine. A Typical Tool condition monitoring condition in machining of super alloy is 

exhibited in Fig 1 

The costs associated with signal acquisition and analysis techniques in tool condition monitoring can vary depending 

on several factors. Traditional signal acquisition methods, such as using dedicated sensors or transducers, generally have 

upfront costs for purchasing and installing the necessary hardware. These costs can include the sensors themselves, 

cabling, amplifiers, and data acquisition systems. Additionally, there may be costs involved in integrating these sensors 

into the existing machinery or equipment. On the other hand, newer technologies like IoT-based systems may require 

investments in wireless connectivity, edge computing devices, and cloud storage for data analysis, which can incur 

additional expenses. 

The analysis of acquired signals also carries its own costs. Traditional signal analysis methods, such as statistical 

analysis or basic signal processing algorithms, often require skilled personnel and specialized software tools, which may 

have associated licensing fees. However, these costs can be relatively lower compared to more advanced techniques like 

machine learning or deep learning. Implementing machine learning or artificial intelligence algorithms for signal analysis 

may require more significant investments in terms of computational resources, software development, and training data 

collection. 

It is essential to consider the long-term costs of maintaining and updating the tool condition monitoring system. This 

includes expenses related to system calibration, sensor maintenance, software updates, and ongoing data storage and 

analysis. It is worth noting that while advanced techniques may involve higher initial costs, they can potentially offer 
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more accurate and automated tool condition monitoring, leading to cost savings in terms of reduced downtime, improved 

productivity, and enhanced quality control. Tool condition monitoring (TCM) relies on various underlying technologies 

and concepts to assess the health and performance of tools used in industrial processes. One fundamental technology is 

sensor technology, which involves the deployment of sensors to collect data on parameters such as vibration, 

temperature, acoustic emissions, and cutting forces. These sensors provide real-time information about the tool's 

condition, enabling the detection of anomalies and potential failures [38]. Another important concept is data analytics, 

which involves the processing and analysis of the sensor data using techniques such as machine learning and statistical 

modeling. By leveraging these analytics methods, patterns and trends can be identified, allowing for predictive 

maintenance and proactive tool replacement. Additionally, Internet of Things (IoT) plays a crucial role in TCM by 

connecting sensors and tools to a network, enabling continuous monitoring, data transmission, and remote access for 

diagnostics and decision-making. Overall, TCM combines sensor technology, data analytics, and IoT to optimize tool 

performance, minimize downtime, and enhance productivity in industrial settings. 

 

 
Fig 1. A Typical Experimental Condition for Tool Condition Monitoring in Machining of Super Alloy. 

 

VIII. CONCLUSION 

In conclusion, monitoring tool condition using acoustic and pulse signals is an important and growing field of research. 

The recent advancements in the field have provided us with novel methods and techniques for extracting valuable 

information from the acoustic and pulse signals generated by cutting tools during machining operations. The signal 

processing techniques used to analyze and classify the signals are complex and require sophisticated algorithms. 

Moreover, the challenges associated with acoustic and pulse-based TCM, such as signal noise and impurities, signal 
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acquisition, feature extraction, and classification, must be addressed in order to ensure the accuracy of the results. With 

the increasing importance of TCM, more research is necessary in order to improve the current methods and to develop 

new techniques that can accurately and reliably monitor tool condition. 
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