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Abstract - Green Machining (GM), a step towards addressing the means and ways to minimize environmental impact has 

found inevitable stand among researchers involved in machinability studies. Several means and techniques are being followed 

and tested with an aim of reducing the adverse effect on environment caused by different manufacturing operations without 

compromising on quality aspects. The major area focused here is the study of the coolant impact on the process and the 

environment. Specifically, when the used coolant is disposed without proper treatment causes adverse effect to the health and 

environment. By considering the environment's effects into account, green machining strategies like dry machining (DM), 

minimum quantity lubrication (MQL), ice-jet machining, cryogenics etc. are employed for minimizing the usage of coolant 

along with high quality deliverables. This study focuses on the dry machinability study during the operation and function of 

end milling on Al6061. The entire experimental analysis were executed as per box-Behnken design (BBD) and grey relational 

analysis (GRA). The study involved spindle speed (Ss), depth of cut (Dc), and feed rate (Fr) as controlling parameters and 

responses as average roughness (Ra), material removal rate (Mrr), and power consumption (Pc). A total of 27 experimental 

runs based on BBD were performed and the responses were analyzed for prediction of optimal solutions.  

 

Keywords - Roughness (Ra), Material Removal Rate (Mrr), Power Consumption (Pc), Box-Behnken Design (BBD), Grey 

Relational Analysis (GRA). 

 

I. INTRODUCTION 

Reddy et. al. [1] made an experimental analysis on the impact of actual geometric tool (including nose radius and also with 

along radial rake angle) and all the necessary parameters (Ss and Fr) on machining performance in the required dry milling 

along with the use of actual solid TiAlN-coated carbide end mill cutters. The study helped in predicting Ra by generating a 

useful mathematical model with the help of various other surface methods. The model thus created was validated for its 

reliability and used for optimization using genetic algorithms (GA).  The result showed satisfactory result of the model 

developed. Wibowo et. al. [2] described a method for estimating the exact optimal values of the three parameters namely Fr 

for estimating minimum Ra by hybridization of kernel principal component analysis (KPCA) based nonlinear regression and 

radial rake angle, Ss, and GA. For building a good nonlinear regression, KPCA based regressions were widely used which 

also helps in managing and prevention of the impact of several multi-linearity in the prediction model. The precise prediction 

compared to standard linear regression was clearly shown in the study also showed reduction of Ra from 45.3% to 54.2% 

when compared to RSM and experimental data [3]. 

Another model linking the Ra and Mrr along with the machining factors was performed for optimisation using RSM and 

DOE in the study. Since the responses Ra and Mrr are contradictory in nature, arriving at the optimal solution was complex and 

therefore, pareto-optimal collection of solutions was followed using the non-domination sorting genetic algorithm-II. 

Rudrapati et. al. [4] made an experimental analysis on machining parameters affecting vibration and Sr during transverse cut 

cylindrical grinding. The study was actually done and performed on a stainless-steel material. Input factors considered were 

Ss, Fr, longitudinal feed, for the BBD matrix. For mathematical modeling, to identify relationships between inputs and 

responses, RSM was employed followed by application of ANOVA for analysis of significance. In order to demonstrate how 

several output reactions fluctuate and differs as the parameters used for machining are modified, vibration and surface 

roughness contour and surface plots have been constructed accordingly. In the end, vibrations and roughness of the surface 

have been optimised concurrently with the multi-objective genetic algorithm (MOGA). The expected parametric condition 

were verified by confirmatory experiments, which is the last step. The suggested optimization approach (RSM cum MOGA) 
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seems useful for evaluating and improving the workflow when multiple input factors influence several important output 

responses throughout a manufacturing process.  

Saglam et. al. [5] the research was done on how the parameters for cylindrical grinding affected the Ra and roundness 

error. Various factors, including wheel material used, loading and dressing nature of wheel, material employed, mechanism 

used in drive, clamping techniques, lubricants opted, Fr, and Ss, etc had a huge direct effect on the performance and quality of 

machining. The proposed research solely looks at the effects of the three variables Dc, Fr, and Ss. The grinding 

experimentation has been set up using Taguchi's orthogonal arrays with the objective to optimize roundness error and Ra. The 

findings from the experiment were analyzed statistically through ANOVA. The results revealed that the roundness feature 

was highly influenced by Ss, Pc, and Dc, while Ra was influenced by Fr and Ss. 

Neşeli et. al. [6] did a field study using the Taguchi technique (TM) and RSM for reducing vibrations (Vb) and Ra. L 27 

orthogonal array served as the foundation for the layout of the experiment. The Vb and Ra of the surfaces were the results, and 

the three parameters used for input were a Ss, Fr, and Dc. The study finally proposed two optimized designs by means of 

computer-aided single-objective optimization. Hou et. al. [7] arrived at the best milling parameters and functionality using 

Taguchi design (TD), RSM, and genetic algorithm (GA). A relevant orthogonal array test is carried out to gather responses 

and values at a cost-effective rate. With the help of the main impact plot and ANOVA, the ideal setting for parameters is 

selected in order to locate and identify the key variables associated with it. The RSM technique was used to draw the 

relationship among the input variables and the output responses and to act as the function of fitness for determining the fitness 

value of the GA method. The experimental findings demonstrate that, in the wet milling of nano-particles, the integrated 

approach does identify the best parameters that produce extremely good output responses. 

Sivasakthivel et. al. [8] analyzed end milling machining factors such as Fr, Ss, cutter helix angle, and axial and radial Dc on 

temperature rise. Using response surface methods, a temperature rise prediction model was created. Al 6063 investigations 

employing high-speed steel end mill cutters were performed using CCD with 32 tests. K-type thermocouples was employed 

for recording temperature rise. ANOVA was used to verify the model appropriateness. The model analyzed both the 

individual and combined effects of the machining settings on the increase in temperature. To ensure a low-temperature 

increase, the machining process characteristics have been optimized using genetic algorithms. The optimization procedure 

was executed using the C program code that was developed. The obtained optimal machining settings resulted in an 

approximate value of 0.173 °C for the lowest rise in temperature. 

Kittur et. al. [9] examined how well pressure die-casting technique models performed. A type of experimental design was 

actually put into place to gather data from the experiments. The output-input correlations were established using the response 

surface strategy. The most suitable and ideal parameters for the procedure were chosen using the desirability factor. In 

accordance with the results of the trials, a pair of nonlinear frameworks using a central composite structure and Box-Behnken 

design are currently being produced. Both of these models have separately been assessed in terms of statistical 

appropriateness and predictive capability using ANOVA and a number of actual test situations. The CCD has been 

demonstrated to deliver results more effectively than BBD, while the latter type of design is proven to execute higher than the 

earlier one for the surface response hardness and porosity. Performance evaluation is carried using the average absolute 

percent variance in predicting the replies. Ra, Hb, and p of the responses are found to have definitive percentage variance with 

values of 5.95, 1.29, and 63.94, correspondingly, in CCD. The comparable numbers in BBD, on the other hand, turn out to be 

14.19, 3.04, and 4.94. Additionally, an attempt was made to reduce the p and Ra whilst increasing the Hb of the die-cast 

component.  

Kilickap et. al. [10] examined how actually drilling AISI 1045's roughness of the surface was impacted by machining 

variables. The experimental conditions matrix consisted of Ss, Fr, and machining environment. A predictive model based on 

numerical framework for Ra was constructed using RSM. The effect of drilling settings on the Ra was assessed, and the best 

machining circumstances for lowering it were found, using RSM and evolutionary techniques. As a result, it showed a strong 

connection between both the actual and predicted values, validating the developed model for calculating Ra with accuracy. 

The expense of the finished item and the amount of time required for machining are significantly decreased through 

employing this kind of model.  

Celep et. al. [11] analyzed experimentally the effects of ultra-fine grinding. For a 3 level BBD, RSM and quadratic 

programming (QP) was implemented to define and optimize certain operational settings in ultra-fine grinding. Grinding 

experiments were carried out in a pin-type vertical stirred mill sized for the laboratory. Through the use of empirical model 

equations, the predictive model was generated and evaluated. A strong coefficient of determination for the analysis of 

variance (R 2 = 0.9698) ensured that the second-order regression model would be a reasonable fit. QP was employed for 

optimizing the model's formula the aim towards minimizing and precisely reduced 80 size within the boundaries of the 

studied experimental range. Utilizing the appropriate amount of control over variables, three confirmation tests were 

conducted to verify the increase in grinding efficiency. 3.37 m was the outcome for d 80, which was lower than the findings 

obtained in the original tests.  

Mukherjee et. al. [12] investigated and studied the outcomes and findings of several optimization methods and techniques 

available in the process of metal cutting. The process and functionality of metal cutting are completely necessary in order to 

efficiently respond to fierce competition and expanding market demand for high-quality goods for the production unit. 

Choosing the appropriate cutting conditions and modelling the correlation between several output-input and in-process 

parameters are two optimization strategies that are frequently employed in the process of absolute metal cutting and are 
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crucial instruments for enhancing output quality in goods and processes.  The ideal cutting conditions can be determined 

using inexpensive mathematical models, but this is a difficult research topic. Modelling and optimization techniques have 

advanced and become more sophisticated over time. 

Due to the intricacy of the welding process [13], the welding conditions have been established using empirical and 

experimental data. Both of genetic algorithms (GA) and RSM approaches are being suggested as answers to such problems 

and might be used to find the ideal welding circumstances. In the beginning, near-optimal conditions were created all over a 

substantial area using a GA. The perfect conditions for welding were then determined across a reasonably small area 

encompassing such nearly perfect circumstances applying response surface techniques. A desirability function strategy was 

utilized to determine distinct objective function values based on whether the optimization problem's target value had a 

positive or negative response. 

Suresh et. al. [14] studied the manufacturing demands trustworthy layouts, frameworks and models and methodologies to 

perfectly find the resulting performance of several machining process because of heavy usage of fully automated machine in 

the current industry. Process planning greatly benefits from the finding and forecasting of the ideal machining settings and 

circumstances for optimum surface quality and dimensional accuracy. In the current work, Ra prediction layout for machining 

mild steel is studied and created to work on utilizing the RSM. Mild steel components were machined throughout the 

experiments utilizing TiN-coated cutting tool. A second-order mathematical model was developed for Ra estimation using 

RSM. The factor effects of the various process parameters are provided by this model. Also, an attempt has been made to use 

GA to improve the desired definitive function or method of the Ra prediction model. The least and highest values of Ra as well 

as the corresponding ideal machining conditions are provided by the GA software.  

Pradhan et. al. [15] studied the findings of an axisymmetric two-dimensional, coupled thermal-structural in EDM process 

reflecting the Ra of an EDM surface. For a single spark heat flux input, transient thermal analysis with Gaussian distribution 

was performed. It is investigated how current affects temperature distribution. In the succeeding structural study, the thermal 

stresses resulting from temperature field non-uniformities are examined under the assumption of elastic-perfectly flexible 

material behaviour. Based on the findings of the FEM study, the real residual stresses was studied during the EDM operation. 

The work piece's residual tensile stresses are negligible following a single heat flux, but they might build up over numerous 

spark cycles and result in damage to the surface like small cracks. Both the temperature dispersion and the residual stress have 

been found to be in excellent accord with past research.  

Krajnik et. al. [16] examined the results of process optimisation and experimental simulation for plunge centerless 

grinding. Evaluation of the micro geometric aided by measurements of Ra was collected after processing. Grinding factors are 

created using RSM, which includes experimental design, regression modelling to fit a model for optimisation. The RSM was 

used to develop an initial Ra simulation. The model was fully created by establishing using regression coefficients and the 

basic structure of the model. The single-objective optimization with computer assistance is carried out using genetic 

algorithms and non-linear programming.  

 

II. BBD 

BBD is a response surface methodology experimental design developed by E. P. Box and Donald Behnken in 1960. This 

design aims to achieve three equally spaced values for each variable, with a minimum of three levels required. The design is 

quadratic, with terms consisting of squares, products of two factors, intercepts, and linear terms. The ratio between the 

number of experimental points and coefficients should be between 1.5 to 2.6. Compared to other design tools such as CCD 

and Dohlert Design, BBD is considered the most powerful because it has better coverage of non-linear design space and 

corners. The number of blocks added to the design depends on the number of factors or parameters. Every design includes 

orthogonal blocks, and BBD or RSM requiring atleast 3 levels. These designs are created by combining 2 level factorial 

designs with the necessary statistical properties. Blocking options are usually available with these designs, allowing for the 

generation of runs to be multiplied by the number of factor level combinations. 

 

BBD Steps 

• The design has specified points where factors are positioned. 

• Each factors have three levels. 

• A quadratic model is used to estimate the design. 

• Strong coefficient estimates are found exactly at the centre point of the design space, while weaker coefficients are 

positioned at the corners of the cube. 

• Missing data and runs can lead to inaccuracies in the results, making the Box-Behnken method not recommended. 

• The Central composite design is preferred as it includes more initial runs and is better suited for solving problems. 

 

III. GRA 

Normalization 

In the data preparation stage, the selection of an objective function determines the approach used. If the aim is to maximize a 

parameter, Equation (1) is applied for normalization, while if the goal is to minimize a parameter, Equation (2) is utilized. 

Normalization is a statistical method that reduces variance and simplifies analysis by transforming data into a consistent scale. 

In the data preparation stage, the selection of an objective function determines the approach used. If the aim is to maximize a 
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parameter, Equation (1) is applied for normalization, while if the goal is to minimize a parameter, Equation (2) is utilized. 

Normalization is a statistical method that reduces variance and simplifies analysis by transforming data into a consistent scale. 

 

 𝑍𝑗(𝑞) = (1) 

 

 𝑍𝑗(𝑞) =
𝑚𝑎𝑥𝑧𝑖(𝑞)−𝑧𝑖(𝑞)

𝑚𝑎𝑥𝑧𝑖(𝑞)−𝑚𝑖𝑛𝑧𝑖(𝑞)
  (2) 

Where, j= 1, ...... m;  

q = 1 ..... n. m is the experimental data  

Zi(q) represents the value after data pre-processing.  

zi(q) is the original sequence data.  

max zi (q) -  largest value of zi (q).  

min zi (q) - the minimal value 

 

Deviation Sequence 

In the stage, the following options were fixed: 

smaller-the -better option is selected for Ra,  

larger-the-better option is chosen for Mrr 

 

Grey Relational Coefficients (GRCs) 

GRC is calculated using equation (3) as shown below, which involves the use of the GRC Ɛi(z).The minimum and maximum 

values indicate the absolute difference, while the lowest and highest values are also considered. Typically ranging between 0 

and 1, the differentiating coefficient is 0.5. 

 

 Ɛ𝑖(𝑧) =
∆𝑚𝑖𝑛+𝛹∆𝑚𝑎𝑥

∆𝑜𝑖(𝑧)+𝛹∆𝑚𝑎𝑥
 (3) 

 

Grey Relational Grade (GRD) 

In this stage, GRD is calculated using the correlation between the reference and comparison sequences. In this stage, all 

equations involving multi-analysis are brought under as a single objective function enabling easy computation and 

interpretation.  

 

Optimal Parameters 

In this stage, the rank of each group of values is determined. Based on the achieved rank, the optimal level can be easily 

computed, which consolidates all responses to identify the best alternative. 

 

Optimized set of Parameters using GRA 

In order to observe the optimal set of parameters, the values are ranked in this stage. GRA is used to calculate the correlation 

between the observations, Mrr and Ra, and obtain a ranked grade for the best possible outcome of the parameter combination. 

The highest ranked grade is selected to obtain the optimal results. 

 
IV. EXPERIMENTAL WORK 

Material  

In the present work, Al 6061 is selected as the material of choice. Common uses of Al 6061 include aircraft and automotive 

parts, bicycle frames, marine application due to its strength-to-weight ratio, screws, and bolts. Table 1 highlights the material 

composition. 

 

Table 1. Material Composition (Chemical) 

Si Fe Cu Mg Cr Zn Ti Others Al 

0.6 0.28 0.2 0.01 1.0 0.04 0.1 0.1 0.15 

 

Machine and Tools  

The machining process was performed on a 3-Axis CNC End Mill, and HSS tool of 12 mm diameter was employed having 4 

flutes with overhanging length maintained at 22 mm to avoid any chatter while machining. BBD matrix is followed for 

conducting experimental runs with assigned parameters as enlisted in Table 2 with their levels assigned.  

 

Table 2. Parameters, Notations & Levels 

Parameters 
Symbol 

Levels 

1 2 3 
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Spindle Speed, (rpm) Ss 2500 2750 3000 

Depth of Cut, (mm) Dc 0.5 0.75 1.0 

Feed Rate, (mm/min) Fr 800 880 960 

 

Experimental Runs 

The experimental runs performed are recorded in the Table 3 with their responses as per BBD matrix. 

 

Table 3. Experimental Runs with Responses 

Ss Dc Fr Ra (microns) Mrr (IPM) Pc (HP) 

2750 0.5 800 3.293 0.349 0.27 

2750 1 960 3.986 1.405 1.47 

2500 0.75 800 3.62 0.895 0.813 

3000 0.75 960 3.659 0.859 0.927 

3000 0.75 880 3.624 0.737 0.697 

2500 0.75 960 3.816 0.976 1.088 

2750 0.75 880 3.639 0.877 0.87 

2750 0.5 880 3.454 0.308 0.315 

2750 0.75 880 3.639 0.877 0.87 

2750 0.75 880 3.639 0.877 0.87 

2500 0.5 880 3.469 0.448 0.488 

3000 0.75 880 3.498 0.9 0.881 

2750 0.5 880 3.328 0.471 0.499 

3000 1 880 3.809 1.306 1.252 

2500 0.75 880 3.655 1.017 1.042 

2750 1 800 3.79 1.324 1.195 

2750 0.75 800 3.604 0.755 0.64 

2750 0.75 960 3.675 0.999 1.099 

2750 0.75 800 3.478 0.918 0.824 

2500 1 880 3.966 1.423 1.413 

2500 0.75 880 3.781 0.854 0.858 

3000 0.5 880 3.312 0.331 0.327 

2750 1 880 3.825 1.446 1.424 

2750 0.5 960 3.489 0.43 0.545 

2750 0.75 880 3.639 0.877 0.87 

2750 1 880 3.951 1.283 1.24 

2750 0.75 880 3.639 0.877 0.87 

2750 0.75 960 3.801 0.836 0.915 

3000 0.75 800 3.463 0.778 0.652 

 
 

Surface Tester 

Mitutoyo surface tester was used for measuring the average value for roughness (Ra). The average Ra value is taken for the 

analysis purpose.  
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V. RESULT AND DISCUSSION 

ANOVA for Ra 

The ANOVA for Ra and its analysis is depicted in the Table 4 below. From the table, the F-value of 323.14 shows the 

significance of the model developed.  This value represents that the model has only a 0.01% chance of attaining this value due 

to noise factor considered.  

 

Table 4. ANOVA for Ra 

Source Sum of Squares df Mean Square F-value p-value  

Model 1.08 14 0.0768 323.14 < 0.0001 significant 

Ss 0.0689 1 0.0689 289.57 < 0.0001  

Dc 0.7854 1 0.7854 3302.93 < 0.0001  

Fr 0.1070 1 0.1070 449.86 < 0.0001  

Ss x Dc 0.0074 1 0.0074 31.10 < 0.0001  

Ssx Fr 0.0066 1 0.0066 27.59 0.0001  

Dc x Fr 0.0178 1 0.0178 74.95 < 0.0001  

Ss
2 0.0049 1 0.0049 20.75 0.0004  

Dc² 0.0018 1 0.0018 7.62 0.0154  

Fr² 0.0022 1 0.0022 9.17 0.0090  

Residual 0.0033 14 0.0002    

Lack of Fit 0.0033 10 0.0003    

Pure Error 0.0000 4 0.0000    

Cor Total 1.08 28     

 

The significance of the parameters can be ascertained by the standard p-value taken at 95% confidence interval. Here in 

this case P-value (less than 0.0500) shows that the model generated is significant. In this case Ss, Dc, Fr, SsxDc, SSxFr, DxF, 

Ss², Dc², Fr² are significant model terms. The governing equation of Ra is given in Eqn 4 below. 

 

𝑅𝑎 = 0.376500 − 0.000177 ∗ 𝑆𝑠 + 2.49033 ∗ 𝐷𝑐 + 0.003231 ∗ 𝐹𝑟 + 0.000688 ∗ 𝑆𝑠 ∗ 𝐷𝑐 + 2.02500𝐸 − 06 ∗ 𝑆𝑠 ∗ 𝐹𝑟
+ 2.02500𝐸 − 06 ∗ 𝑆𝑠 ∗ 𝐹𝑟 + 5.00000 − 0.003338 ∗ 𝐷𝑐 ∗ 𝐹𝑟 − 4.41333𝐸 − 07 ∗ 𝑆𝑠² − 0.267333 ∗ 𝐷𝑐²
− 2.86458𝐸 − 06 ∗ 𝐹𝑟² 

(4) 

 

Parameter Interaction Effects on Ra 

The upcoming figures represents the interaction effects of the parameters on to the response Ra. These representation gives a 

clear understanding on the parametric effect on the responses, which in turn helps to optimize the machining parameter 

selection based on the objectives assigned. Fig 1 shows the interaction effect of Ss and Dc on Ra. The graph shows that almost 

in all levels of Ss minimum Ra can be achieved provided it is influenced by the assigned level of Dc. When the level of Dc is 

increased from 0.5 mm there is a gradual and significant increase in Ra. However, min Ra is achieved when the level of Dc and 

Ss is maintained lower and higher level respectively. On careful analysis one can say that min Ra is achievable when Ss is set 

at 3000 rpm and Dc is maintained between 0.5 to 0.7 mm. 

Fig 2 shows the interaction effect of Ss and Fr on Ra. From the graph it is clearly evident that Fr has higher influence on Ss 

compared to that of Dc. From the graph it is notable to state that the range of achieving minimum Ra is very narrow and it is 

achievable only when Ss is maintained between 2950 to 3000 rpm and Fr between 800-840 mm/min. Any other combination 

of these parameters will result in higher Ra.  
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Fig 1. Contour Plot - Ss & Dc on Ra. 

 
Fig 2. Contour Plot - Ss & Fr on Ra. 

 

 
Fig 3. Contour Plot - Dc & Fr on Ra. 

 

Fig 3 displays the impact of Dc and Fr on Ra. In this case, these two parameters Dc and Fr plays a prominent role in 

identification of optimum settings. These two parameters has a dynamic relation governing the response and varies 

according to the level assigned for Ss. Fr between 800-850 mm/min and Dc between 0.5 to 0.6 mm assists in attaining 

minimum Ra.   
 

Predicted Optimum Parameter for Ra 

The below Table 5 displays the predicted optimized value for Ra 

 

Table 5. Optimized Value - Ra 

Runs Ss Dc Fr Ra 

1 2974.222 0.649 800.479 3.013 

 

Prediction of Mrr 

Table 6 shows the ANOVA for Mrr and the F-value (6233.68) shows the significance of the created and developed 

model.  This value represents that the layout or model has only a 0.01% chance of attaining this value due to noise factor 

considered.  
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Table 6. ANOVA for Mrr 

Source Sum of Squares df Mean 

Square 

F-value p-value  

Model 2.99 14 0.2137 6233.68 < 0.0001 significant 

Ss 0.0370 1 0.0370 1078.09 < 0.0001  

Dc 2.85 1 2.85 83179.69 < 0.0001  

Fr 0.0227 1 0.0227 662.29 < 0.0001  

Ss x Dc 0.0000 1 0.0000 0.0000 1.0000  

Ss x Fr 0.0001 1 0.0001 4.20 0.0596  

Dc x Fr 0.0000 1 0.0000 0.0000 1.0000  

Ss² 0.0004 1 0.0004 12.11 0.0037  

Dc² 0.0002 1 0.0002 4.73 0.0473  

Fr² 0.0004 1 0.0004 12.11 0.0037  

Residual 0.0005 14 0.0000    

Lack of Fit 0.0005 10 0.0000    

Pure Error 0.0000 4 0.0000    

Cor Total 2.99 28     

 
The significance of the parameters can be ascertained by the p-value at 95% confidence interval. Here in this case P-

value (less than 0.0500) shows that the model generated is significant. In this case Ss, Dc, Fr, Ss², Dc², Fr² are significant 

model terms. The governing equation of Mrr is given in Eqn 5 below. 

 

𝑀𝑟𝑟 = −3.55200 + 0.000746 ∗ 𝑆𝑠 + 2.07000 ∗ 𝐷𝑐 + 0.003569 ∗ 𝐹𝑟 + 9.18904𝐸 − 18 ∗ 𝑆𝑠 ∗ 𝐷𝑐 − 3.00000𝐸 − 07
∗ 𝑆𝑠 ∗ 𝐹𝑟 − 4.81535𝐸 − 20 ∗ 𝐷𝑐 ∗ 𝐹𝑟 − 1.28000𝐸 − 07 ∗ 𝑆𝑠² − 0.080000 ∗ 𝐷𝑐² − 1.25000𝐸 − 06
∗ 𝐹𝑟² 

(5) 

 

Parameter Interaction Effect on Mrr 

The following figures represents the interaction effects of the parameters on Mrr. This set of representation gives a clear 

understanding the parametric effect on the result and outcome, which in turn helps to optimize the machining parameter 

selection based on the objectives assigned.  

 

 
Fig 4. Contour Plot - Ss & Dc on Mrr 

 
Fig 5. Contour Plot - Ss & Fr on Mrr. 
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Fig 6. Contour Plot - Dc & Fr on Mrr. 

 

Fig 4 displays the interaction effect of Ss and Dc on Mrr. The graph shows that almost in all levels of Ss maximum Mrr 

can be achieved provided it is influenced by the assigned level of Dc. When the level of Dc is increased from 0.7 to 1 mm 

there is a gradual and significant increase in Mrr. However, maximum Mrr is achieved when the level of Dc and Ss is 

maintained higher and lower level respectively. On careful analysis one can say that maximum Mrr is achievable when Ss 

is set between 2500 to 2600 rpm and Dc is maintained between 0.9 to 1 mm. Fig 5 neatly depicts and displays the 

interaction effect of Ss and Fr on Mrr. With the help of graph, it is clearly understandable that Fr has higher influence on Ss 

compared to that of Dc. From the graph it is notable to state that Fr contributes to maximum Mrr almost in all its levels 

irrespective of the Ss assigned. Fig 6 

  

Predicted Optimum Parameter for Mrr 

The below Table 7 shows the predicted optimized value for Mrr 

Table 7. Optimized Value - Mrr 

Runs Ss Dc Fr Mrr 

1 2500.86 0.966 912.941 1.334 

 

Prediction of Pc 

Table 8 shows the ANOVA for Pc  and the F-value (631.13) shows the significance of the developed and created model.  

The value represents that this layout or model has only a 0.01% chance of attaining this value due to noise factor 

considered.  

 

Table 8. ANOVA for Pc 

Source Sum of Squares df Mean Square F-value p-value  

Model 2.95 14 0.2106 631.13 < 0.0001 significant 

Ss 0.1102 1 0.1102 330.27 < 0.0001  

Dc 2.48 1 2.48 7444.92 < 0.0001  

Fr 0.2280 1 0.2280 683.20 < 0.0001  

Ss x Dc 0.0020 1 0.0020 6.07 0.0273  

Ss x Fr 4.000E-06 1 4.000E-06 0.0120 0.9144  

Dc x Fr 0.0000 1 0.0000 0.0000 1.0000  

Ss² 0.0076 1 0.0076 22.91 0.0003  

Dc² 0.0132 1 0.0132 39.51 < 0.0001  

Fr² 0.0210 1 0.0210 62.79 < 0.0001  

Residual 0.0047 14 0.0003    

Lack of Fit 0.0047 10 0.0005    

Pure Error 0.0000 4 0.0000    

Cor Total 2.95 28     
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The significance of all the parameters can be ascertained by the p-value at 95% confidence interval. Here in this case 

P-value (less than 0.0500) shows that the layout or model generated is very necessary and important. In such scenarios 

Ss, Dc, Fr, Ss x Dc, Ss², Dc², Fr² are absolutely crucial and important model terms. The governing equation of Ra is given in 

Eqn 6 below. 

 

𝑃𝑐 = −11.40167 + 0.002054 ∗ 𝑆𝑠 + 1.91200 ∗ 𝐷𝑐 + 0.017215 ∗ 𝐹𝑟 + 0.000360 ∗ 𝑆𝑠 ∗ 𝐷𝑐 + 5.00000𝐸 − 08 ∗ 𝑆𝑠
∗ 𝐹𝑟 + 8.79239𝐸 − 18 ∗ 𝐷𝑐 ∗ 𝐹𝑟 − 5.49333𝐸 − 07 ∗ 𝑆𝑠2 − 0.721333 ∗ 𝐷𝑐2 − 8.88021𝐸 − 06
∗ 𝐹𝑟2 

(6) 

Parameter Interaction Effect 

The following figures represents the parameters' interactions' influence on Pc. This set of representation gives a clear 

understanding of the parametric effect on the result and outcome, which in turn helps to optimize the machining 

parameter selection based on the objectives assigned.  

 

 
Fig 7. Contour Plot - Ss & Dc on Pc . 

 
Fig 8. Contour Plot - Ss & Fr on Pc. 

 

 
Fig 9. Contour Plot - Dc & Fr on Pc. 

 

Fig 7 displays the interaction effect of Ss and Dc on Pc. The graph shows that almost all levels of Ss assists minimum 

power consumption but influenced by assigned level of Dc. When the level of Dc is maintained between 0.5 to 0.65 mm, 

minimum Pc  can be achieved. Fig 8 shows the interaction effect of Ss and Fr on Pc. In the show graph, it is very obvious 

that Fr has higher influence on Ss compared to that of Dc. From the graph it is notable to state that Fr contributes to 

minimum Pc when its level is maintained between 800 to 850 mm/min with higher level of Ss. Fig 9 shows the effect of 

Dc and Fr on Pc. In this case, these two parameters Dc and Fr plays a prominent role in identification of optimum settings. 

These two parameters has a dynamic relation governing the response and varies according to the level assigned for Ss. Fr 

assists in achieving minimum Pc when its levels are maintained between 800 to 880 mm min and Dc between 0.5 to 0.6 

mm. 
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Predicted Optimum Parameter for Power Consumption 

The below Table 9 displays the predicted optimized value for Pc 

 

Table 9. Optimized Value - Pc 

Run Ss Dc Fr Pc 

1 2798.766 0.504 806.322 0.203 

 

VI. SEM ANALYSIS 

The following section provides an explanation of the SEM images taken for the experimental runs conducted to further 

interpret the surface texture. SEM analysis was performed as shown in the subsequent sections. Fig 10 and 11 displays 

the SEM images for runs 10, 12, 16, 17, 18 and 24 at a magnification level of 500X. In all the images, there is evidence 

of adhered material fragments that develop during plastic deformation while machining. Smeared materials, micro holes, 

and grooves are also visible in the images, which are formed during the material removal process and are consistently 

present throughout. The presence of burrs and adhered chip particles is possibly due to thermal distortion or inefficient 

removal of temperature that arises due to EDM process.   

 

 
a) 

 
b) 

 
c) 

Fig 10. SEM Analysis images for runs 10, 12 and 16. 

 
a) 

 
b) 

 
c) 

Fig 11. SEM Analysis images for runs 17, 18 and 24. 

 

VII. GRA OPTIMIZATION  

Table 10 shows the GRA optimization. 

 

Table 10. GRA Optimization  

Runs 

Normalization Deviation Sequence 
Grey Relation 

Coefficients 
GRG RANK 

Ra 

Normalized 

Pc 

Normalized 

Mrr 

Normalized 
Ra Pc Mrr Ra Pc Mrr 

1 1.000 1.000 0.981 0.000 0.000 0.019 1.000 1.000 0.963 0.988 1 

2 0.000 0.000 0.101 1.000 1.000 0.899 0.333 0.333 0.357 0.341 29 

3 0.529 0.548 0.526 0.471 0.453 0.474 0.515 0.525 0.513 0.518 12 

4 0.471 0.453 0.556 0.529 0.548 0.444 0.486 0.477 0.530 0.498 18 

5 0.523 0.644 0.658 0.477 0.356 0.343 0.512 0.584 0.593 0.563 9 
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6 0.245 0.318 0.458 0.755 0.682 0.542 0.398 0.423 0.480 0.434 23 

7 0.500 0.500 0.541 0.500 0.500 0.459 0.500 0.500 0.521 0.507 13 

8 0.768 0.963 1.015 0.232 0.038 -0.015 0.683 0.930 1.031 0.881 3 

9 0.500 0.500 0.541 0.500 0.500 0.459 0.500 0.500 0.521 0.507 13 

10 0.500 0.500 0.541 0.500 0.500 0.459 0.500 0.500 0.521 0.507 13 

11 0.745 0.818 0.898 0.255 0.182 0.102 0.662 0.733 0.831 0.742 5 

12 0.705 0.491 0.522 0.295 0.509 0.478 0.629 0.495 0.511 0.545 11 

13 0.950 0.809 0.879 0.050 0.191 0.121 0.908 0.724 0.805 0.813 4 

14 0.255 0.182 0.183 0.745 0.818 0.817 0.402 0.379 0.380 0.387 25 

15 0.478 0.357 0.424 0.522 0.643 0.576 0.489 0.437 0.465 0.464 21 

16 0.284 0.229 0.168 0.716 0.771 0.832 0.411 0.393 0.375 0.393 24 

17 0.552 0.692 0.643 0.448 0.308 0.358 0.527 0.619 0.583 0.576 8 

18 0.450 0.309 0.439 0.550 0.691 0.561 0.476 0.420 0.471 0.456 22 

19 0.733 0.538 0.507 0.267 0.462 0.493 0.652 0.520 0.503 0.559 10 

20 0.029 0.048 0.086 0.971 0.953 0.914 0.340 0.344 0.354 0.346 28 

21 0.297 0.510 0.560 0.703 0.490 0.440 0.416 0.505 0.532 0.484 19 

22 0.971 0.953 0.996 0.029 0.048 0.004 0.946 0.913 0.992 0.950 2 

23 0.233 0.038 0.067 0.767 0.962 0.933 0.395 0.342 0.349 0.362 27 

24 0.716 0.771 0.913 0.284 0.229 0.087 0.638 0.686 0.852 0.725 6 

25 0.500 0.500 0.541 0.500 0.500 0.459 0.500 0.500 0.521 0.507 13 

26 0.052 0.192 0.203 0.948 0.808 0.798 0.345 0.382 0.385 0.371 26 

27 0.500 0.500 0.541 0.500 0.500 0.459 0.500 0.500 0.521 0.507 13 

28 0.268 0.463 0.575 0.732 0.538 0.425 0.406 0.482 0.541 0.476 20 

29 0.755 0.682 0.623 0.245 0.318 0.377 0.671 0.611 0.570 0.618 7 

 

Optimized Parameters -GRA 

Table 11 shows the optimized parameters. 

 

Table 11. Optimized Parameters - GRA 

Run Ss Dc Fr Ra Mrr Pc 

1 2798.766 0.504 806.322   0.203 

 

VIII. CONFIRMATORY RUNS 

Table 12 shown below shows the values recorded by performing the confirmatory runs to validate the accuracy of the 

optimized levels achieved.  

Table 12. Confirmatory Runs 

Tool Type 

Predicted Achieved 

Dry run 

Ra 

Dry run 

Mrr 

Dry run 

Pc 

Dry run 

Ra 

Dry run 

Mrr 

Dry run 

Pc 

BBD 

Single response (Ra) 3.013 - - 3.019 - - 

Single Response (Mrr) - 1.334 - - 1.346 - 

Single Response  (Pc) - - 0.203 - - 0.207 
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GRA Multi-response 2.987 1.313 0.206 2.989 1.298 0.207 

 

IX. CONCLUSION 

The study is performed as single response and multi-response optimization. For single response BBD design is followed 

and for multi-response GRA is applied. The following are the inferences noted in the entire study and found to be 

acceptable in accord to the results attained in confirmatory runs: 

i) For achieving minimum roughness, B plays the dominant role followed by C and D 

ii) The least contributing factor governing roughness in this case, is found to be A 

iii) From table 12, minimum Ra achieved is 3.013 microns under single response method 

iv) For maximum Mrr, C and D played the prominent role  

v) In single response, maximum Mrr achievable is 1.334 mm3/min 

vi) In single response, minimum power consumption of 0.207 HP is recorded 

vii) In case of multi-response optimization, GRA results prediction stands good with minimum Ra of 2.987 microns, 

maximum Mrr of 1.313 mm3/min and minimum Pc of 0.207 HP 
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