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Abstract - Advancement in technology has paved way for new materials and alloys such as Metal Matrix Composites 

(MMC) that are not only lightweight but possess higher strength-to-weight ratio and hardness. MMCs find applications 

ranging from nuclear, and aerospace to defence industries. Due to their uniqueness in terms of wear and high-temperature 

resistance, In industrial applications, these materials are frequently used. The quality of a machined surface is identified 

by the measure of surface texture achieved in terms of roughness (Ra). Whereas, the production time depends on the rate 

of production and is directly related to the material removal rate (Mrr) of a given process. For achieving best outcome, it 

is very important to address the above two constraints Ra and Mrr. On careful analysis, one can find that these two 

parameters are contradictory to each other and finding an optimal solution among them is the most crucial task. 

Conventional machining offers inadequate accuracy and precision while dealing with complicated structures. Also, they 

are time-consuming and encounter issues while dealing with extremely difficult-to-cut materials. Moreover, localized 

heating, workpiece stress, and varied cutting forces affect the overall performance of the operation. To address such 

issues, electrical discharge machining (EDM) offers a controlled electric spark that nearly generates strong cutting force, 

minimal stress on the workpiece surface during high flexibility and material removal, which has recently gained attention 

as a technology that is efficient for cutting materials that are challenging to work with. But still, from a techno-

economical perspective, achieving higher efficiency is crucial due to the complex-dynamic relationship of the parameters 

involved in the EDM process. This article deals with the machinability performance and its optimization of Al-SiC alloy 

while performing machining operations in EDM by considering Pulse on, Wire Feed, Pulse off and Servo voltage as the 

controlling parameters. The responses considered were Ra, Mrr. 

 

Keywords - Al-SiC, Electrical Discharge Machining, Roughness, Pulse on (A), Wire Feed (C), Pulse off (B) and Servo 

Voltage (D). 

 

I. INTRODUCTION  

The field of science and technology has been continuously pushing the boundaries for the development of new materials 

and compositions that possess high hardness, strength with reduced weight. Metal matrix composites (MMC) have 

gained increasing popularity in industries including electronics, aerospace, automotive, defence, and nuclear compared to 

conventionally available materials. These are extensively considered due to their high performance in terms of desirable 

properties required, but traditional machining techniques often fall short in terms of accuracy, precision, and efficiency 

when it comes to machining MMCs, which can have complex shapes and be time-consuming or even impossible to 

machine. In recent times, EDM has emerged as an effective means for machining hard materials, including MMCs, due 

to its controlled electric spark in localized means generating minimal cutting force and stress while machining. 

Therefore, EDM has become a sustainable and viable alternative for machining MMCs. However, achieving high 

production efficiency in EDM requires careful consideration of input parameters that controls the EDM process.  To 

name few of the input parameters includes dielectric flushing pressure, electrode used, dielectric fluids, pulse duration 

etc. Moreover, optimizing the EDM process for different materials requires a systematic approach that combines 

experimental, modeling, and optimization methodologies to address the multiple conflicting objectives (multi-objective) 

involved in the process. Several statistical and computational approaches, such as Artificial Neural Networks (ANN), 

Grey Relational Analysis (GRA), Taguchi Design (TD), Desirability Function Approach (DFA), Principal Component 

Analysis (PCA), Response Surface Methodology (RSM), Genetic Algorithm (GA), and Particle Swarm Optimization 

(PSO) etc. have been applied for predictive modeling and process optimization in EDM. While extensive research has 

been conducted on different workpiece materials using these statistical tolls still there is a lack of studies on the 

machining characteristics for Al-SiC based MMCs using EDM. Furthermore, most of the literature has focused on major 

machining performance indicators like Mrr, electrode wear rate, and Ra, while neglecting other important aspects, such as 
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cracking of surfaces and thickness of recast layer. Moreover, there is a gap in the literature in terms of economic analysis 

to enable cost-efficient EDM machining, which presents an opportunity for further research from a techno-economic 

perspective. Additionally, sustainability assessment in the EDM process, which aligns with the current trend towards 

green and cleaner manufacturing practices for a safer environment, remains largely unexplored. In light of these research 

gaps and the potential contributions to the field, this study analyzes the EDM efficiency while working on Al-SiC in 

terms of Mrr, and Ra, with controlling parameters as discharge current, A, B, C and D. The study utilize Box-Behnken 

design (BBD), Analysis of Variance (ANOVA), RSM, and computational approaches to develop an effective and 

optimized machining model using EDM. The study will also consider the techno-economic aspect by analyzing the 

economic feasibility of the EDM process for cost-effective manufacturing.  

 

II. LITERATURE SURVEY 

Advancement in Science & Technology has surfaced the way for new materials and alloys such as Metal Matrix 

Composites (MMC) that are not only lightweight but possess higher strength-to-weight ratio and hardness. MMCs find 

its application ranging from nuclear, and aerospace to defence industries. Due to their uniqueness in terms of wear and 

high-temperature resistance, MMCs are widely used in industrial applications. 

The measure of surface texture represents the quality of a machined surface is measured in terms of Ra. Whereas, the 

production time depends on the rate of production and is directly related to the Mrr of a given process. For achieving best 

outcome, it is very important to address the above two constraints Ra and Mrr. On careful analysis, one can find that these 

two parameters are contradictory to each other and finding an optimal solution among them is the most crucial task. 

Conventional machining offers inadequate accuracy and precision while dealing with complicated structures. Also, they 

are time-consuming and encounter issues while dealing with extremely difficult-to-cut materials. Moreover, localized 

heating, workpiece stress, and varied cutting forces affect the overall performance of the operation. To address such 

issues, electrical discharge machining (EDM) offering a controlled electric spark producing required cutting force, 

minimal stress on the machining surface has recently gained attention as an effective technology for machining. But still, 

from a techno-economical perspective, achieving higher efficiency is crucial due to the complex-dynamic relationship of 

the parameters involved in the EDM process. Several research has been conducted in EDM for understanding the 

behaviour of machinability and the impact of the process parameters considered for the investigations. Dielectric flushing 

pressure is one of several parameters that determine how the cutting process performs in EDM [1], which also includes 

electrode materials [2–4], factors that impact electric sparks [current (Dc), discharge voltage (Dv), frequency (f), and 

pulse length (Pl)] [5–7] and dielectric fluids [8–9]. In addition, identifying appropriate and ideal parameters for EDM 

plays a crucial role that offers improved machining outcomes in terms of efficiency in-built with higher quality and 

reduced machining cost. EDM is indeed a suitable process for milling advanced composites made of metal matrix 

materials. It utilizes electrical discharges to remove material and shape the workpiece. It offers several advantages and 

capabilities that make it well-suited for working with advanced composites. Different statistical and computational 

techniques, which include RSM [10–11], ANN has been used in predicted modelling and Taguchi method [12], GRA 

[13–14], Affordability requirement approach of RSM [15–16], PCA [17–18], TOPSIS [19–20], GA [21], and PSO [22–

23] have been used for process and parametric optimization of EDM. The machinability has been the subject of many 

tests using a variety of experimental concepts, computational methods, and optimization techniques [24–25], to predict 

different technical responses and control process parameters while cutting various workpiece materials (Al-Mg2Si, MDN 

300, Al-SiC MMC, AISI 316 L, Ti13Zr13Nb, nickel alloy, Al7075, Al6061, Al6063 alloy, Si3N4-TiN MMC, 

WC,Ti6Al4V, AISI D2, D3, D6). 

Since multiple attempts have been made by researchers around the world to identify the machining characteristics and 

associated procedure variables to manage the requirements for EDM, extra study is still needed to analyze the results of 

different EDM parameters and increase material effectiveness. The literature review shows that no significant 

experiments were done on the use of the EDM methodology to process hard-to-machine materials, such as Al-SiC based 

on MMC. Further, it was noticed that a majority of the literature focuses primarily on characteristics such as Mrr, and Ra 

of the machined component when evaluating machining performance; problems such as surface cracks and layer width in 

recasting were not stressed as much. The study reveals a number of investigations that have been published that use 

either a single approach (computational or statistical) but not addressed multi-objective issues, which are inevitable in 

enhancing the productivity and machining performance. Therefore, it is essential to set up a suitable technical framework 

for Al-SiC to arrive at efficient and ideal machining while using EDM. Comparatively, almost no researcher has 

developed an economic analysis approach that enables cost-effective manufacturing utilizing EDM. This makes the 

current investigation suitable for further investigation. The objective is to analyse the efficiency of EDM while working 

on Al-SiC in terms of  Mrr, and  Ra by appropriate controlling factors (Dc, A, B, Fp). In the study BBD is used to perform 

experimental runs followed by ANOVA and application of GRA to arrive at optimized solution. The study will be 

helpful as technological guidance for the industrial usage in the automotive, aerospace, military, and electrical sectors 

working on the workpiece considered for study.  
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III. BOX-BEHNKEN DESIGN (BBD) 

BBD was developed by E. P. Box and Donald Behnken as a response surface methodology experimental design. It aims 

to achieve three equally spaced values for each variable, with a minimum of three levels required. The design is quadratic 

in nature, incorporating terms consisting of squares, products of two factors, intercepts, and linear terms. The ratio 

between the number of experimental points and coefficients should ideally fall between 1.5 to 2.6 for optimal 

performance. BBD is widely considered as the most powerful due to its superior coverage of non-linear design space and 

corners. It is an independent quadratic design with an embedded factorial known as a response surface design. These 

designs require 3levels of each factor resulting in a higher-order response with fewer experimental runs compared to 

other traditional techniques. 

To ensure accuracy and prevent errors, the number of runs conducted should not be overly large under steady-state 

conditions. The number of factors or parameters under study determines the size of blocks to be added. Every design 

includes orthogonal blocks, and BBD specifically requiring only three levels. Two-level factorial designs with the 

necessary statistical properties were employed for sequential runs to be performed. The quadratic model is appropriate 

with only three levels, and blocking options are often available with these designs, allowing for the generation of runs to 

be multiplied. 

 

Box Behnken Steps 

• The design entails specified points for positioning factors. 

• Each factor is assigned three levels. 

• A quadratic model is utilized for estimating the design. 

• Strong coefficient estimates are located precisely at the centre point of the design and weaker coefficients 

positioned at the corners of the cube. 

• Caution must be exercised as missing data and runs can potentially introduce inaccuracies in the results, 

rendering the Box-Behnken method not recommended. 

• The Central Composite Design (CCD) is often preferred due to its inclusion of more initial runs and better 

suitability for problem-solving. 

 

IV. GREY RELATIONAL ANALYSIS (GRA) 

Normalization 

The approach utilized in the data preparation stage is determined by the objective function selected. Equation (1) is 

applied for normalization when the aim is to maximize a parameter, while Equation (2) is used when the goal is to 

minimize a parameter. Normalization, a statistical method that standardizes data to a consistent scale, is employed to 

reduce variance and simplify analysis. The selection of the objective function in the data preparation stage guides the 

normalization approach, with Equation (1) for maximizing and Equation (2) for minimizing parameters, in order to 

achieve consistency in data analysis. 

 

 𝑌𝑖(𝑘) =             (1) 

 

 𝑌𝑖(𝑘) = (𝑚𝑎𝑥𝑦𝑖(𝑘) − 𝑦𝑖(𝑘))/(𝑚𝑎𝑥𝑦𝑖(𝑘) − 𝑚𝑖𝑛𝑦𝑖(𝑘) ) (2) 

 

Here, i= 1,...... j; k = 1,..... k. j is the experimental data. k represents the responses. Yi(k) denotes value after data pre-

processing, while yi(k) is the original data (sequences). Max yi(k) and min yi(k) are the largest and minimal value of 

yi(k). 

 

Deviation Sequence 

Smaller-the-better option is opted for Ra and the larger-the-better for Mrr. The deviation calculated by determining the 

difference between each response and the highest normalized value obtained, proportionate to that value. 

 

Grey Relational Coefficients (GRCs) 

GRC, ξi(l) are calculated using equation. Absolute value is reflected based on the minimum and maximum values 

recorded. Typically the value ranges between 0 and 1, and in this study the differentiating coefficient is set at 0.5. 

 

 𝜉𝑖(𝑙) = (∆𝑚𝑖𝑛 + 𝛹∆𝑚𝑎𝑥)/(∆𝑜𝑖(𝑙) + 𝛹∆𝑚𝑎𝑥) (3) 

 

Grey Relational Grade (GRD) 

GRD (c) represents the correlation between the reference value and comparison sequences. In this stage, a multi-

objective function is transformed into a single-objective function and GRD is calculated using the equation 4. 
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Optimal Parameters 

The rank of each group of values is determined in this stage. By using the attained rank, the optimal level can be 

computed efficiently, consolidating all responses to identify the best alternative. 

 

Optimized set of Parameters using GRA 

GRA is utilized to calculate the correlation between the observations, Mrr and Ra, and obtain a ranked grade that 

represents the best possible outcome of the parameter combination. The highest ranked grade is selected to obtain the 

optimal results. 

V. EXPERIMENTAL WORK 

Material  

In the current study, Al-SiC has been chosen as the material of choice. Al-SiC finds widespread applications in various 

industries such as aerospace, automotive, marine, owing to its favorable strength-to-weight ratio, as well as its use in 

screws and bolts. The chemical constituents of the material are enlisted in Table 1. 

 

Table 1. Chemical Composition 

Al Cu Si Mg Fe Ti Cr Mn Zn Others 

96.85 0.3 0.7 0.9 0.6 0.10 0.25 0.05 0.20 0.05 

 

Machine and Tools 

The machining operation was performed on a 4-Axis wire EDM, and an electrode of 0.4 mm diameter was employed 

while machining. The experimental runs were performed based on Box Behnken design with assigned parameters as 

enlisted in Table 2 with their levels assigned. 

 

Table 2. Machining Parameters 

Name Notations 
Levels 

1 2 3 

Pulse ON (µm) A 3 8 12 

Pulse OFF(µm) B 10 15 20 

Wire Feed (m/min) C 2 3 4 

Servo Voltage (V) D 35 40 45 

 

Experimental Runs 

Table 3 enlists the experimental runs performed with their responses as per the sequence of runs specified by BBD. 

 

Table 3. Experimental Runs with Responses 

Run A (µs) B (µs) C (m/min) D (V) Ra (µm) Mrr (mm3/min) 

1 3 15 4 40 0.412 0.000384 

2 8 15 3 40 0.901 0.002475 

3 8 20 3 35 1.253 0.000484 

4 12 15 2 40 0.269 0.00383 

5 8 20 3 45 0.637 0.002188 

6 3 10 3 40 0.331 0.001158 

7 8 15 3 40 0.198 0.001916 

8 8 10 4 40 1.426 0.001204 

9 8 10 3 45 1.287 0.001259 

10 12 15 3 35 0.783 0.001531 

11 12 15 3 45 0.582 0.002922 

12 8 10 2 40 0.173 0.001638 

13 8 20 4 40 0.641 0.00053 

14 12 20 3 40 0.905 0.003371 

15 8 15 4 35 1.232 0.000392 

16 8 15 2 35 0.104 0.003478 

17 8 15 4 45 0.266 0.00165 
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18 8 15 3 40 1.259 0.001455 

19 8 15 3 40 1.048 0.001543 

20 12 15 4 40 1.165 0.001719 

21 3 15 3 35 0.389 0.000557 

22 8 20 2 40 0.119 0.001914 

23 3 15 3 45 0.683 0.000294 

24 8 15 2 45 1.388 0.000369 

25 12 10 3 40 1.491 0.00049 

26 8 15 3 40 1.342 0.002377 

27 3 15 2 40 0.284 0.000402 

28 3 20 3 40 0.873 0.001896 

29 8 10 3 35 0.67 0.002579 

 
Surface Tester 

Ra is measured using a Mitutoyo surface tester, and the average Ra value is recorded for analysis. 

 

VI. RESULT AND DISCUSSION 

ANOVA for Ra 

The ANOVA for Ra and the F-value (2.51) shows the significance of the model developed.  This value represents that the 

model has only a 4.86% chance of attaining this value due to noise factor considered (Table 4).  

 

Table 4. ANOVA for Ra 

Source Sum of Squares df Mean Square F-value p-value  

Model 4.1 14 0.2927 2.51 0.0486 significant 

A 0.4118 1 0.4118 3.52 0.0816  

B 0.0396 1 0.0396 0.3383 0.57  

C 0.5706 1 0.5706 4.88 0.0444  

D 0.0222 1 0.0222 0.1896 0.6699  

AB 0.3327 1 0.3327 2.84 0.1138  

AC 0.1425 1 0.1425 1.22 0.2883  

AD 0.0596 1 0.0596 0.5092 0.4872  

BC 0.1336 1 0.1336 1.14 0.3033  

BD 0.3801 1 0.3801 3.25 0.093  

CD 1.27 1 1.27 10.82 0.0054  

A² 0.1584 1 0.1584 1.35 0.2639  

B² 0.0049 1 0.0049 0.0419 0.8407  

C² 0.45 1 0.45 3.85 0.07  

D² 0.0099 1 0.0099 0.0844 0.7757  

Residual 1.64 14 0.117    

Lack of Fit 0.8108 10 0.0811    

Pure Error 0.8267 4 0.2067    

Cor Total 5.74 28     

 

The significance of the parameters can be ascertained by the p-value at 90% confidence interval. Here in this case P-

value (less than 0.0500) shows that the model generated is significant. In this case C, CD are significant model terms. 

The governing equation of Ra is given in Eqn 5 below. 
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𝑅𝑎 =  −29.92995 +  0.440952 ∗ 𝐴 +  0.654018 ∗  𝐵 +  6.53507 ∗  𝐶 +  0.696450 ∗  𝐷 −  0.012765 ∗  𝐴 ∗  𝐵 +
 0.041773 ∗  𝐴 ∗  𝐶 −  0.005401 ∗ 𝐴 ∗  𝐷 −  0.036550 ∗  𝐵 ∗ 𝐶 − 0.012330 ∗  𝐵 ∗  𝐷 −  0.112500 ∗ 𝐶 ∗  𝐷 −

0.007840 ∗ 𝐴 ∗ 𝐴 +  0.001100 ∗ 𝐴 ∗ 𝐴 −  0.263383 ∗  𝐶 ∗ 𝐶 −  0.001560 ∗  𝐷 ∗ 𝐷.......... 

 (5) 

Parameter Interaction Effects on Ra 

The following figures illustrate the interaction effects of the parameters on Ra, providing a clear understanding of how 

the parameters impact the responses and aiding in the selection of optimal machining parameters based on the assigned 

objectives. Fig 1 depicts the interaction effect of A and B on Ra. The graph shows that the minimum Ra can be achieved 

within the range of 3 to 4 µs, depending on the level of B. As the level of B increases from 13 µs, there is a gradual and 

significant increase in Ra. However, the lowest Ra is achieved when A is maintained at lower levels and B between 10 to 

13 µs. Fig 2 depicts the interaction effect of A and D on Ra. The graph shows that the minimum Ra can be achieved 

within the range of 3 to 4 µs for A, and 35 to 37 V for D. Other combinations of levels resulted in higher Ra. This 

interprets that the influence of A and D are the prominent factors in governing the Ra.  

 

 
Fig 1. Interaction Plot of A, B on Ra. 

 

 
Fig 2. Interaction Plot of A, D on Ra. 
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Fig 3 depicts the interaction effect of A and C on Ra. The graph shows almost all levels of A contributes towards 

minimum Ra. However, it is being influenced by the factor C. The lower level of C contributes well in achieving the 

desired response. When the level of C is increased beyond 2.3 m/min one could witness a gradual increase in Ra.   

 

 
Fig 3. Interaction Plot of A, Con Ra. 

 

 
Fig 4. Interaction Plot of B, C on Ra. 

 

Fig 4 depicts the interaction effect of B and C on Ra. Minimum Ra is achieved when B is maintained between 10 to 14 

µs and C maintained at lower level of 2 m/min. Any other combination of levels resulted in higher Ra that proves the 

contradictory effect of these two parameters in governing the output response of Ra. 
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Fig 5. Interaction Plot of B, D on Ra. 

 

Fig 5 depicts the interaction effect of B and D on Ra. From the graph, it can be predicted that these two parameters are 

the prominent factors governing the response. The minimum Ra that could be achieved in best possible combination of 

these two factors is around 0.2 microns. Hence in identifying the optimal solutions the interaction effect of these two 

factors is inevitable. Fig 6 depicts the interaction effect of C and D on Ra. The graph shows that when C is maintained 

between 2 to 2.3 m/min and D between 35 to 37 V resulted in minimum Ra.  

 

 
Fig 6. Interaction Plot of C, D on Ra. 

 

Predicted Optimum Parameter for Ra 

 

The below Table 5 displays the predicted optimized value for Ra 
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Table 5. Optimized Value - Ra 

A B C D Ra 

7.207 19.169 3.893 44.807 0.07 

 

Prediction of Mrr 

Table 6 shows the ANOVA for Mrr  and the F-value (2.49) shows the significance of the created and developed model.  

This value represents that the layout or model has only a 4.94% chance of attaining this value due to noise factor 

considered.  

 

Table 6. ANOVA for Mrr 

Source Sum of Squares df Mean Square F-value p-value   

Model 0 14 1.49E-06 2.49 0.0494 significant 

A 7.01E-06 1 7.01E-06 11.75 0.0041   

B 2.25E-07 1 2.25E-07 0.3763 0.5494   

C 2.30E-06 1 2.30E-06 3.86 0.0698   

D 3.72E-08 1 3.72E-08 0.0623 0.8065   

AB 8.19E-07 1 8.19E-07 1.37 0.2609   

AC 1.06E-06 1 1.06E-06 1.78 0.2034   

AD 5.70E-07 1 5.70E-07 0.9555 0.3449   

BC 2.26E-07 1 2.26E-07 0.3783 0.5484   

BD 2.29E-06 1 2.29E-06 3.83 0.0705   

CD 4.77E-06 1 4.77E-06 7.99 0.0134   

A² 4.37E-08 1 4.37E-08 0.0733 0.7905   

B² 1.42E-07 1 1.42E-07 0.2372 0.6338   

C² 5.75E-07 1 5.75E-07 0.9645 0.3427   

D² 4.86E-07 1 4.86E-07 0.8145 0.382   

Residual 8.35E-06 14 5.97E-07       

Lack of Fit 7.48E-06 10 7.48E-07    

Pure Error 8.70E-07 4 2.17E-07       

Cor  

Total 
0 28         

 
The significance of the parameters can be ascertained by the p-value at 90% confidence interval. Here in this case P-

value (less than 0.0500) shows that the model generated is significant. In this case A and CD are significant model terms. 

The governing equation of Ra is given in Eqn 6 below. 

 

Mrr = + 0.027106 −  0.000395 ∗  𝐴 −  0.001012 ∗ 𝐵 −  0.005821 ∗  𝐶 −  0.000369 ∗  𝐷 +  0.000020 ∗  𝐴 ∗
 𝐵 − 0.000114 ∗ 𝐴 ∗  𝐶 +  0.000017 ∗   𝐴 ∗  𝐷 −  0.000048 ∗  𝐵 ∗  𝐶 +  0.000030 ∗  𝐵 ∗ 𝐷 +  0.000218 ∗  𝐶 ∗

 𝐷 −  4.11912𝐸 − 06 ∗  𝐴 ∗ 𝐴 −  5.90733𝐸 − 06 ∗  𝐵 ∗ 𝐵 − 0.000298 ∗  𝐶 ∗ 𝐶 −  0.000011 ∗  𝐷 ∗ 𝐷.......... 

(6) 
 

Parameter Interaction Effect on Mrr 

The following figures represents the interaction effects of the parameters on Mrr. This set of representation gives a clear 

understanding the parametric effect on the result and outcome, which in turn helps to optimize the machining parameter 

selection based on the objectives assigned. Fig 7 depicts the interaction effect of A and B on Ra. The graph shows that the 

maximum Mrr is achieved when A is maintained at level between 8 to 12 µs, and at higher level of 20 µs. The graphical 

representation shows contribution towards higher Mrr except when the level of B is assigned between 16 to 20 µs and A 

maintained at lower level of 2 µs. This relationship shows the contradictory performance of the two factors towards Mrr. 
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Fig 7. Interaction Plot of A, B on Mrr. 

  

 
Fig 8. Interaction Plot of A, D on Mrr. 

 

Fig 8 depicts the interaction effect of A and D on Mrr. The graph shows that the higher Mrr can be achieved within the 

range of 10 to12 µs for A, and 40 to 45 V for D. Fig 9 depicts the interaction effect of A and C on Mrr. The graph shows 

that higher level of A contributes towards maximum Mrr. However, it is being influenced by the factor C. The lower 

level of C contributes well in achieving the desired response. When the level of C is increased beyond 2.5 m/min one 

could witness a gradual decrease in Mrr.  
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Fig 9. Interaction Plot of A, C on Mrr. 

 

 
Fig 10. Interaction Plot of B, C on Mrr. 

 

Fig 10 depicts the interaction effect of B and C on Mrr. The graph shows that almost in all assigned levels of B and C 

contributes toward achieving maximum Mrr. This proves that the factors B and C plays a very vital role in determining 

the response actively. Fig 11 depicts the interaction effect of B and D on Mrr. From the graph, it can be predicted that 

maximum Mrr is achieved when B is assigned between 10 to 17 µs and D assigned between 35 to 43 V.  Fig 12 depicts 

the interaction effect of C and D on Mrr. Maximum Mrr is achieved when C is maintained between 2 to 3.3 m/min and D 

between 35 to 45 V.  
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Fig 11. Interaction Plot of B, D on Mrr. 

 

 
Fig 12. Interaction Plot of C, D on Mrr. 

 

Predicted Optimum Parameter for Mrr 

The below Table 7 shows the predicted optimized value for Mrr based on BBD design. 

 

Table 7. Optimized Value - Mrr 

A B C Servo Voltage Mrr 

11.961 19.932 2.011 38.866 0.004 

 

VII. SEM Analysis 

The following section provides an explanation of the SEM images taken for the experimental runs conducted to further 

interpret the surface texture achieved by EDM. SEM analysis was performed as shown in the subsequent sections. Fig 13 

displays the SEM images for runs 10, 12, 16, 17 and 18 at a magnification level of 500X. In all the images, there is 

evidence of adhered material fragments that develop during plastic deformation while machining. Smeared materials, 

micro holes, and grooves are also visible in the images, which are formed during the material removal process and are 

consistently present throughout. The presence of burrs and adhered chip particles is possibly due to thermal distortion or 

inefficient removal of temperature that arises due to EDM process.   
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a) Run 10 

 
b) Run 12 

 
c) Run 16 

 
d) Run 17 

 
e) Run 18 

Fig 13. SEM Images. 

 

VIII. GRA Optimization 

Table 8 presents the computation of the GRA for the responses recorded from the experimental runs conducted. The data 

was first normalized and then deviation sequencing was performed. In the third stage, the grey relation coefficient was 

calculated, followed by the determination of ranks based on the computed GRG values. The analysis reveals that run 1 

has the highest rank and is selected as the optimized values for this machining process, considering all responses in the 

multi-objective optimization. 

 

Table 8. GRA Optimization 

 

Ra 

 

Mrr 

Normalized 

Values  

Deviation 

Sequence 

Grey Relation 

Coefficients 
GRG Rank 

Ra  Mrr Ra Mrr Ra Mrr   

0.412 0.000384 0.778 0.973 0.222 0.026 0.692 0.951 0.822 2 

0.901 0.002475 0.425 0.383 0.575 0.616 0.465 0.448 0.457 27 

1.253 0.000484 0.172 0.945 0.828 0.054 0.376 0.903 0.640 14 

0.269 0.00383 0.881 0.000 0.119 0.999 0.808 0.334 0.571 16 

0.637 0.002188 0.616 0.464 0.384 0.535 0.565 0.483 0.524 18 
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0.331 0.001158 0.836 0.755 0.164 0.244 0.753 0.672 0.713 8 

0.198 0.001916 0.932 0.541 0.068 0.458 0.881 0.522 0.701 9 

1.426 0.001204 0.047 0.742 0.953 0.257 0.344 0.660 0.502 21 

1.287 0.001259 0.147 0.726 0.853 0.273 0.370 0.647 0.508 19 

0.783 0.001531 0.510 0.649 0.490 0.350 0.505 0.589 0.547 17 

0.582 0.002922 0.655 0.256 0.345 0.743 0.592 0.402 0.497 23 

0.173 0.001638 0.950 0.619 0.050 0.380 0.910 0.568 0.739 6 

0.641 0.00053 0.613 0.932 0.387 0.067 0.564 0.882 0.723 7 

0.905 0.003371 0.422 0.130 0.578 0.869 0.464 0.365 0.415 28 

1.232 0.000392 0.187 0.971 0.813 0.028 0.381 0.947 0.664 12 

0.104 0.003478 1.000 0.099 0.000 0.900 1.000 0.357 0.679 11 

0.266 0.00165 0.883 0.616 0.117 0.383 0.811 0.566 0.688 10 

1.259 0.001455 0.167 0.671 0.833 0.328 0.375 0.604 0.489 25 

1.048 0.001543 0.319 0.646 0.681 0.353 0.424 0.586 0.505 20 

1.165 0.001719 0.235 0.596 0.765 0.403 0.395 0.554 0.475 26 

0.389 0.000557 0.795 0.925 0.205 0.074 0.709 0.870 0.790 3 

0.119 0.001914 0.989 0.541 0.011 0.458 0.979 0.522 0.750 5 

0.683 0.000294 0.583 0.999 0.417 0.000 0.545 1.000 0.772 4 

1.388 0.000369 0.074 0.978 0.926 0.021 0.351 0.959 0.655 13 

1.491 0.00049 0.000 0.944 1.000 0.055 0.333 0.900 0.617 15 

1.342 0.002377 0.107 0.410 0.893 0.589 0.359 0.459 0.409 29 

0.284 0.000402 0.870 0.968 0.130 0.031 0.794 0.942 0.868 1 

0.873 0.001896 0.446 0.546 0.554 0.453 0.474 0.525 0.500 22 

0.67 0.002579 0.592 0.353 0.408 0.646 0.551 0.436 0.494 24 

 

Optimized Parameters -GRA 

The Table 9 shows the optimized value attained for multi-objective function based on GRA. From the computation it is 

observed that run 27 is the optimized parameter as shown below: 

 

Table 9. Optimized Parameters - GRA 

A B C D Ra Mrr 

3 15 2 40 0.284 0.000402 

 

IX. CONFIRMATORY RUNS 

The validation of the optimized values obtained was confirmed through the execution of confirmatory runs. Trial runs 

were conducted for both single-objective and multi-objective optimized parameter settings, and the results are presented 

in Table 10. 

 

Table 10. Confirmatory Runs 

Tool Type 

Predicted Achieved 

Dry run 

Ra 

Dry run 

Mrr 

Dry run 

Ra 

Dry run 

Mrr 

BBD 

Single response (Ra) 0.027 - 0.029 - 

Single Response (Mrr) 
- 0.004 - 0.039 

Single Response  (Pc) - - - - 

GRA Multi-response 0.284 0.00402 0.286 0.004 
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 % Deviation 

Single Response (Ra) 0.7 

Single Response (Mrr) 8.75 

Multi-response (GRA) Ra 0.7 Mrr 0.49 

 

Table 10 showcases the percentage deviation recorded, confirming the effectiveness of the predicted optimized 

values. Both the single-response and multi-response optimized levels were found to be satisfactory and acceptable, as 

their deviation is within 10%. 

 

X. CONCLUSION 

The study is performed as single response and multi-response optimization. For single response BBD design is followed 

and for multi-response GRA is applied. The following are the inferences noted in the entire study and found to be 

acceptable in accord to the results attained in confirmatory runs: 

i) For achieving minimum roughness, Bplays the dominant role followed by C and D 

ii) The least contributing factor governing roughness in this case, is found to be A 

iii) From table 10, minimum Ra achieved is 0.029 microns under single response method 

iv) For maximum Mrr, C and D played the prominent role  

v) In single response, maximum Mrr achievable is 0.039 

vi) In case of multi-response optimization, GRA results prediction stands good with minimum Ra of 0.286 

microns, maximum Mrr of 0.004 mm3/min 
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